Advertisement

Semantic Interpretation of Intermediate Quantifiers and Their Syllogisms

  • Petra Murinová
  • Vilém Novák
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)

Abstract

This paper is a contribution to the formal theory of intermediate quantifiers (linguistic expressions such as most, few, almost all, a lot of, many, a great deal of, a large part of, a small part of). The latter concept was informally introduced by P. L. Peterson in his book and formalized in the frame of higher-order fuzzy logic by V. Novák. The main goal of this paper is to demonstrate how our theory works in an intended model. We will also show, how validity of generalized intermediate syllogisms can be semantically verified.

Keywords

Generalized quantifiers intermediate quantifiers fuzzy type theory evaluative linguistic expressions generalized Aristotle’s syllogisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  2. 2.
    Cignoli, R.L.O., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    Holčapek, M.: Monadic L-fuzzy quantifiers of the type 〈1n, 1〉. Fuzzy Sets and Systems 159, 1811–1835 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dvořák, A., Holčapek, M.: L-fuzzy Quantifiers of the Type 〈1〉 Determined by Measures. Fuzzy Sets and Systems 160, 3425–3452 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Keenan, E.L.: Quantifiers in formal and natural languages. In: Handbook of Logic and Language, pp. 837–893. Elsevier, Amsterdam (1997)CrossRefGoogle Scholar
  7. 7.
    Murinová, P.: A Formal Theory of Generalized Intermediate Syllogisms. Fuzzy Sets and Systems 186, 47–80 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Novák, V.: On fuzzy type theory. Fuzzy Sets and Systems 149, 235–273 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Novák, V.: A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets and Systems 159(22), 2939–2969 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Novák, V.: A formal theory of intermediate quantifiers. Fuzzy Sets and Systems 159(10), 1229–1256 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Novák, V.: EQ-algebra-based fuzzy type theory and its extension. Fuzzy Sets and Systems 159(22), 2939–2969 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Novák, V.: Elements of Model Theory in Higher Order Fuzzy Logic. Fuzzy Sets and Systems 205, 101–115 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Peterson, P.: Intermediate quantifiers, Logic, linguistics, Aristotelian semantics. Ahgate, Aldershot (2000)Google Scholar
  14. 14.
    Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Claredon Press, Oxford (2006)Google Scholar
  15. 15.
    Keenan, E.L., Westerståhl, D.: Quantifiers in formal and natural languages. In: Handbook of Logic and Language, pp. 837–893. Elsevier, Amsterdam (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Petra Murinová
    • 1
  • Vilém Novák
    • 1
  1. 1.Centre of Excellence IT4Innovations, Institute for Research and Applications of Fuzzy ModelingDivision of the University of OstravaOstrava 1Czech Republic

Personalised recommendations