Advertisement

Improving the Understandability of OLAP Queries by Semantic Interpretations

  • Carlos Molina
  • Belen Prados-Suárez
  • Miguel Prados de Reyes
  • Carmen Peña Yañez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)

Abstract

Everyday methods providing managers with elaborated information making more comprehensible the results obtained of queries over OLAP systems are required. This problem is relatively recent due to the huge amount of information they store, but so far there are few proposals facing this issue, and they are mainly focused on presenting the information to the user in a comprehensible language (natural language). Here we go further and introduce a new mathematical formalism, the Semantic Interpretations, to supply the user not only understandable responses, but also semantically meaningful results.

Keywords

Queries interpretation OLAP Fuzzy Logic Semantic Interpretation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosc, P., Lietard, L., Pivert, O.: Extended functional dependencies as a basis for linguistic summaries. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 255–263. Springer, Heidelberg (1998), http://dl.acm.org/citation.cfm?id=645802.669203 CrossRefGoogle Scholar
  2. 2.
    Bouchon-Meunier, B., Moyse, G.: Fuzzy linguistic summaries: Where are we, where can we go? In: 2012 IEEE Conference on Computational Intelligence for Financial Engineering Economics (CIFEr), pp. 1–8 (2012)Google Scholar
  3. 3.
    Delgado, M., Martín-Bautista, M., Sánchez, D., Vila, M.: On a characterization of fuzzy bags. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS, vol. 2715, pp. 119–126. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Goldberg, E., Kittredge, N.D., Using, R.I.: natural-language processing to produce weather forecasts. IEEE Expert 9, 45–53 (1994)CrossRefGoogle Scholar
  5. 5.
    Portet, F., Reiter, E., Hunter, J., Sripada, S.: Automatic generation of textual summaries from neonatal intensive care data. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 227–236. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Yu, J., Reiter, E., Sripada, J.H., Sumtime-turbine, S.: A knowledge-based system to communicate gas turbine time-series data. In: The 16th International Conference on Industrial & Engineering Applications of Artificial Intelligence and Expert Systems (2003)Google Scholar
  7. 7.
    Kacprzyk, J., Wilbik, A.: Linguistic summaries of time series using a degree of appropriateness as a measure of interestingness. In: Ninth International Conference on Intelligent Systems Design and Applications, ISDA 2009, pp. 385–390 (2009)Google Scholar
  8. 8.
    Danlos, L., Combet, F.M., Easytext, V.: an operational nlg system. In: ENLG 2011, 13th European Workshop on Natural Language Generation (2011)Google Scholar
  9. 9.
    Lietard, L.: A new definition for linguistic summaries of data. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008 (IEEE World Congress on Computational Intelligence), pp. 506–511 (2008)Google Scholar
  10. 10.
    Molina, C., Rodriguez-Ariza, L., Sanchez, D., Vila, A.: A new fuzzy multidimensional model. IEEE Transactions on Fuzzy Systems 14(6), 897–912 (2006)CrossRefGoogle Scholar
  11. 11.
    Castillo-Ortega, R., Marín, N., Sánchez, D.: A fuzzy approach to the linguistic summarization of time series. Journal of Multiple-Valued Logic and Soft Computing 17(2,3), 157–182 (2011)Google Scholar
  12. 12.
    Rasmussen, D., Yager, R.R.: Finding fuzzy and gradual functional dependencies with summarysql. Fuzzy Sets Syst. 106(2), 131–142 (1999), http://dx.doi.org/10.1016/S0165-01149700268-6 MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Sripada, S., Reiter, E., Davy, I.: Sumtime-mousam: Configurable marine weather forecast generator. Tech. rep. (2003)Google Scholar
  14. 14.
    Yager, R.R.: A new approach to the summarization of data. Information Sciences 28, 69–82 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Yager, R.R.: Fuzzy summaries in database mining. In: Proceedings the 11th Conference on Artificial Intelligence for Applications (1995)Google Scholar
  16. 16.
    Yseop: Faire parler les chiffres automatiquement, http://www.yseop.com/demo/diagFinance/FR/
  17. 17.
    Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Computers & Mathematics with Applications 9, 149–184 (1983)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carlos Molina
    • 1
  • Belen Prados-Suárez
    • 2
  • Miguel Prados de Reyes
    • 3
  • Carmen Peña Yañez
    • 3
  1. 1.Department of Computer SciencesUniversity of JaenJaenSpain
  2. 2.Department of Software EngineeringUniversity of GranadaGranadaSpain
  3. 3.Computer Science DepartmentSan Cecilio HospitalGranadaSpain

Personalised recommendations