Detecting Anomalous and Exceptional Behaviour on Credit Data by Means of Association Rules

  • Miguel Delgado
  • Maria J. Martin-Bautista
  • M. Dolores Ruiz
  • Daniel Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)


Association rules is a data mining technique for extracting useful knowledge from databases. Recently some approaches has been developed for mining novel kinds of useful information, such us peculiarities, infrequent rules, exception or anomalous rules. The common feature of these proposals is the low support of such type of rules. Therefore, finding efficient algorithms for extracting them are needed.

The aim of this paper is three fold. First, it reviews a previous formulation for exception and anomalous rules, focusing on its semantics and definition. Second, we propose efficient algorithms for mining such type of rules. Third, we apply them to the case of detecting anomalous and exceptional behaviours on credit data.


Data mining association rules exception rules anomalous rules fraud credit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Manilla, H., Sukent, R., Toivonen, A., Verkamo, A.: Fast discovery of Association rule. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAA Press (1996)Google Scholar
  2. 2.
    Balderas, M.A., Berzal, F., Cubero, J.C., Eisman, E., Marín, N.: Discovering hidden association rules. In: KDD Workshop on Data Mining Methods for Anomaly Detection, Chicago, pp. 13–20 (2005)Google Scholar
  3. 3.
    Berzal, F., Cubero, J.C., Marín, N., Gámez, M.: Anomalous association rules. In: IEEE ICDM Workshop Alternative Techniques for Data Mining and Knowledge Discovery (2004)Google Scholar
  4. 4.
    Berzal, F., Delgado, M., Sánchez, D., Vila, M.A.: Measuring accuracy and interest of association rules: A new framework. Intelligent Data Analysis 66(3), 221–235 (2002)Google Scholar
  5. 5.
    Delgado, M., Marín, N., Sánchez, D., Vila, M.A.: Fuzzy association rules: General model and applications. IEEE Trans. on Fuzzy Systems 11(2), 214–225 (2003)CrossRefGoogle Scholar
  6. 6.
    Delgado, M., Ruiz, M.D., Sánchez, D.: Studying interest measures for association rules through a logical model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 18(1), 87–106 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Delgado, M., Ruiz, M.D., Sánchez, D.: New approaches for discovering exception and anomalous rules. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 19(2), 361–399 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ding, J., Yau, S.S.T.: TCOM, an innovative data structure for mining association rules among infrequent items. Computers & Mathematics with Applications 57(2), 290–301 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Duval, B., Salleb, A., Vrain, C.: On the discovery of exception rules: A survey. Studies in Computational Intelligence 43, 77–98 (2007)CrossRefGoogle Scholar
  10. 10.
    Fawcet, T., Provost, F.: Adaptative fraud detection. In: Data Mining and Knowledge Discovery, pp. 291–316 (1997)Google Scholar
  11. 11.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Comput. Surv. 38(3), 9 (2006)CrossRefGoogle Scholar
  12. 12.
    Hussain, F., Liu, H., Suzuki, E., Lu, H.: Exception rule mining with a relative interestingness measure. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 86–97. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Liu, H., Lu, H., Feng, L., Hussain, F.: Efficient search of reliable exceptions. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 194–204. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Louie, E., Lin, T.Y.: Finding association rules using fast bit computation: Machine-oriented modeling. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 486–494. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Padmanabhan, B., Tuzhilin, A.: A belief driven method for discovering unexpected patterns. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, pp. 94–100 (1998)Google Scholar
  16. 16.
    Rauch, J., Šimunek, M.: An alternative approach to mining association rules. Studies in Computational Intelligence (SCI) 6, 211–231 (2005)Google Scholar
  17. 17.
    Shortliffe, E., Buchanan, B.: A model of inexact reasoning in medicine. Mathematical Biosciences 23, 351–379 (1975)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Silberschatz, A., Tuzhilin, A.: User-assisted knowledge discovery: how much should the user be involved. In: ACM-SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (1996)Google Scholar
  19. 19.
    Sim, A.T.H., Indrawan, M., Srinivasan, B.: Mining infrequent and interesting rules from transaction records. In: 7th WSEAS Int. Conf. on AI, Knowledge Engineering and Databases (AIKED 2008), pp. 515–520 (2008)Google Scholar
  20. 20.
    Suzuki, E.: Discovering unexpected exceptions: A stochastic approach. In: Proceedings of the Fourth International Workshop on RSFD, pp. 225–232 (1996)Google Scholar
  21. 21.
    Suzuki, E.: Undirected discovery of interesting exception rules. International Journal of Pattern Recognition and Artificial Intelligence 16(8), 1065–1086 (2002)CrossRefGoogle Scholar
  22. 22.
    Suzuki, E.: Discovering interesting exception rules with rule pair. In: Proc. Workshop on Advances in Inductive Rule Learning at PKDD 2004, pp. 163–178 (2004)Google Scholar
  23. 23.
    Suzuki, E., Shimura, M.: Exceptional knowledge discovery in databases based on information theory. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 275–278. AAAI Press (1996)Google Scholar
  24. 24.
    Taniar, D., Rahayu, W., Lee, V., Daly, O.: Exception rules in association rule mining. Applied Mathematics and Computation 205, 735–750 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Yao, Y., Wang, F.Y., Zeng, D., Wang, J.: Rule + exception strategies for security information analysis. IEEE Intelligent Systems, 52–57 (2005)Google Scholar
  26. 26.
    Zhong, N., Ohshima, M., Ohsuga, S.: Peculiarity oriented mining and its application for knowledge discovery in amino-acid data. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 260–269. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Zhou, L., Yau, S.: Efficient association rule mining among both frequent and infrequent items. Computers & Mathematics with Applications 54(6), 737–749 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miguel Delgado
    • 1
  • Maria J. Martin-Bautista
    • 1
  • M. Dolores Ruiz
    • 1
  • Daniel Sánchez
    • 1
    • 2
  1. 1.Dpt. Computer Science and A.I., CITIC-UGRUniversity of GranadaGranadaSpain
  2. 2.European Centre for Soft ComputingMieresSpain

Personalised recommendations