Using Formal Concept Analysis to Detect and Monitor Organised Crime

  • Simon Andrews
  • Babak Akhgar
  • Simeon Yates
  • Alex Stedmon
  • Laurence Hirsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)


This paper describes some possible uses of Formal Concept Analysis in the detection and monitoring of Organised Crime. After describing FCA and its mathematical basis, the paper suggests, with some simple examples, ways in which FCA and some of its related disciplines can be applied to this problem domain. In particular, the paper proposes FCA-based approaches for finding multiple instances of an activity associated with Organised Crime, finding dependencies between Organised Crime attributes, and finding new indicators of Organised Crime from the analysis of existing data. The paper concludes by suggesting that these approaches will culminate in the creation and implementation of an Organised Crime ‘threat score card’, as part of an overall environmental scanning system that is being developed by the new European ePOOLICE project.


Association Rule Formal Concept Concept Lattice Organise Crime Formal Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, S.: In-close2, a high performance formal concept miner. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS, vol. 6828, pp. 50–62. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Andrews, S., Orphanides, C.: FcaBedrock, a formal context creator. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 181–184. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Andrews, S., Orphanides, C.: Knowledge discovery through creating formal contexts, pp. 455–460. IEEE Computer Society (2010)Google Scholar
  4. 4.
    Becker, P., Correia, J.H.: The ToscanaJ Suite for Implementing Conceptual Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Europol. Eu organised crime threat assessment: Octa 2011. file no. 2530-274. Technical report, Europol, O2 Analysis & Knowledge, The Hague (2011)Google Scholar
  6. 6.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010),
  7. 7.
    Ganter, B., Kuzntesov, S.O.: Formalizing hypotheses with concepts. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 342–356. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1998)Google Scholar
  9. 9.
    Goethals, B.: Frequent itemset mining implementations repository,
  10. 10.
    Goethals, B., Zaki, M.: Advances in frequent itemset mining implementations: Report on fimi’03. SIGKDD Explorations Newsletter 6(1), 109–117 (2004)CrossRefGoogle Scholar
  11. 11.
    Imberman, S., Domanski, D.: Finding association rules from quantitative data using data booleanization (1999)Google Scholar
  12. 12.
    Kuznetsov, S.O.: Mathematical aspects of concept analysis. Journal of Mathematical Science 18, 1654–1698 (1996)CrossRefGoogle Scholar
  13. 13.
    Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of galois connections induced by object-attribute relational data. Inf. Sci. 185(1), 114–127 (2012), doi:10.1016/j.ins.2011.09.023MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Pastor, R.: epoolice: Early pusuit against organised crime using environmental scanning, the law and intelligence systems (2013),
  15. 15.
    Priss, U.: Formal concept analysis in information science. Annual Review of Information Science and Technology (ASIST) 40 (2008)Google Scholar
  16. 16.
    United Nations: Global programme against transnational organized crime. Results of a pilot survey of forty selected organized criminal groups in sixteen countries. Technical report, United Nations: Offcie on Drugs and Crime (2002)Google Scholar
  17. 17.
    General Secretariat. Serious and organised crime threat assessment (socta) - methodology. Technical report, Council of the European Union (2012)Google Scholar
  18. 18.
    CISC Strategic Criminal Analytical Services. Strategic early warning for criminal intelligence. Technical report, Criminal Intelligence Service Canada (CISC), Central Bureau, Ottawa (2007)Google Scholar
  19. 19.
    Valtchev, P., Missaoui, R., Godin, R.: Formal concept analysis for knowledge discovery and data mining: The new challenges. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 352–371. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Yevtushenko, S.A.: System of data analysis “concept explorer”. In: Proceedings of the 7th National Conference on Artificial Intelligence KII 2000, pp. 127–134 (2000) (in Russian) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Simon Andrews
    • 1
  • Babak Akhgar
    • 1
  • Simeon Yates
    • 1
  • Alex Stedmon
    • 1
  • Laurence Hirsch
    • 1
  1. 1.CENTRICSheffield Hallam UniversitySheffieldUK

Personalised recommendations