Conceptual Pathway Querying of Natural Logic Knowledge Bases from Text Bases

  • Troels Andreasen
  • Henrik Bulskov
  • Jørgen Fischer Nilsson
  • Per Anker Jensen
  • Tine Lassen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)


We describe a framework affording computation of conceptual pathways between a pair of terms presented as a query to a text database. In this framework, information is extracted from text sentences and becomes represented in natural logic, which is a form of logic coming much closer to natural language than predicate logic. Natural logic accommodates a variety of scientific parlance, ontologies and domain models. It also supports a semantic net or graph view of the knowledge base. This admits computation of relationships between concepts simultaneously through pathfinding in the knowledge base graph and deductive inference with the stored assertions. We envisage use of the developed pathway functionality, e.g., within bio-, pharma-, and medical sciences for calculating bio-pathways and causal chains.


Natural Logic Relative Clause Description Logic Predicate Logic Formal Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreasen, T., Bulskov, H., Zambach, S., Lassen, T., Madsen, B.N., Jensen, P.A., Thomsen, H.E., Fischer Nilsson, J.: A semantics-based approach to retrieving biomedical information. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS, vol. 7022, pp. 108–118. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Andreasen, T., Bulskov, H., Jensen, P.A., Lassen, T.: Extracting Conceptual Feature Structures from Text. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 396–406. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    van Benthem, J.: Essays in Logical Semantics, Studies in Linguistics and Philosophy, vol. 29. D. Reidel Publishing Company (1986)Google Scholar
  4. 4.
    van Benthem, J.: Natural Logic, Past And Future, Workshop on Natural Logic, Proof Theory, and Computational Semantics 2011, CSLI Stanford (2011),
  5. 5.
    Benjamin, N.G., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Proceedings of the 12th International Conference on World Wide Web (WWW 2003), pp. 48–57. ACM, New York (2003)Google Scholar
  6. 6.
    Muskens, R.: Towards Logics that Model Natural Reasoning, Program Descrip-tion Research program in Natural Logic (2011),
  7. 7.
    Fischer Nilsson, J.: On Reducing Relationships to Property Ascriptions, Information Modelling and Knowledge Bases XX. In: Kiyoki, Y., Tokuda, T., Jaakkola, H., Chen, X., Yoshida, N. (eds.). Frontiers in Artificial Intelligence and Applications, vol. 190 (2009) ISBN: 978-1-58603-957-8Google Scholar
  8. 8.
    Fischer Nilsson, J.: Querying class-relationship logic in a metalogic framework. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS, vol. 7022, pp. 96–107. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Fischer Nilsson, J.: Diagrammatic Reasoning with Classes and Relationships. In: Moktefi, A., Shin, S.-J. (eds.) Visual Reasoning with Diagrams. Studies in Universal Logic. Birkhäuser, Springer (March 2013)Google Scholar
  10. 10.
    Sanchez Valencia, V.: The Algebra of Logic. In: Gabbay, D.M., Woods, J. (eds.) Handbook of the History of Logic. The Rise of Modern Logic: From Leibniz to Frege, vol. 3. Elsevier (2004)Google Scholar
  11. 11.
    MacCartney, B., Manning, C.: An Extended Model of Natural Logic. In: Bunt, H., Petukhova, V., Wubben, S. (eds.) Proceedings of the 8th IWCS, Tilburg, pp. 140–156 (2009)Google Scholar
  12. 12.
    Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Research 32, D267–D270 (2004)Google Scholar
  13. 13.
    Amylase, National Library of Medicine’s MedlinePlus (2013), (retrieved March 1, 2013)
  14. 14.
    Pancreatitis, Wolters Kluwer Health’s physician-authored clinical decision support resource UpToDate (2013), (retrieved March 1, 2013)
  15. 15.
    Hypothalamus, emedicinehealth (2013), (retrieved March 1, 2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Troels Andreasen
    • 1
  • Henrik Bulskov
    • 1
  • Jørgen Fischer Nilsson
    • 2
  • Per Anker Jensen
    • 3
  • Tine Lassen
    • 3
  1. 1.CBITRoskilde UniversityDenmark
  2. 2.IMMTechnical University of DenmarkDenmark
  3. 3.IBCCopenhagen Business SchoolDenmark

Personalised recommendations