Semi-Supervised and Active Learning for Automatic Segmentation of Crohn’s Disease

  • Dwarikanath Mahapatra
  • Peter J. Schüffler
  • Jeroen A. W. Tielbeek
  • Franciscus M. Vos
  • Joachim M. Buhmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)


Our proposed method combines semi supervised learning (SSL) and active learning (AL) for automatic detection and segmentation of Crohn’s disease (CD) from abdominal magnetic resonance (MR) images. Random forest (RF) classifiers are used due to fast SSL classification and capacity to interpret learned knowledge. Query samples for AL are selected by a novel information density weighted approach using context information, semantic knowledge and labeling uncertainty. Experimental results show that our proposed method combines the advantages of SSL and AL, and with fewer samples achieves higher classification and segmentation accuracy over fully supervised methods.


Random Forest Semantic Information Label Sample Semantic Knowledge Unlabeled Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Patt. Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chapelle, O., Scholkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  4. 4.
    Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analysis. Springer (2013)Google Scholar
  5. 5.
    Freund, Y., Seung, H., Samir, E., Tishby, N.: Selective sampling using the query by committee algorithm. Mach. Learn. 28(2), 133–168 (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Iglesias, J.E., Konukoglu, E., Montillo, A., Tu, Z., Criminisi, A.: Combining generative and discriminative models for semantic segmentation of CT scans via active learning. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 25–36. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Lewis, D., Catlett, J.: Heterogenous uncertainty sampling for supervised learning. In: ICML, pp. 148–156 (1994)Google Scholar
  8. 8.
    Mahapatra, D., Schüffler, P.J., Tielbeek, J., Buhmann, J.M., Vos, F.M.: A supervised learning based approach to detect crohn’s disease in abdominal mr volumes. In: Proc. MICCAI-ABD, pp. 97–106 (2012)Google Scholar
  9. 9.
    Rimola, J., Rodriguez, S., Garcia Bosch, O., et al.: Magnetic resonance for assessment of disease activity and severity in ileocolonic Crohn’s disease. Gut. 58, 1113–1120 (2009)CrossRefGoogle Scholar
  10. 10.
    Settles, B.: Active learning literature survey. Tech. Rep. 1648, University of Wisconsin-Madison (January 2010)Google Scholar
  11. 11.
    Vos, F.M., et al.: Computational modeling for assessment of IBD: to be or not to be? In: Proc. IEEE EMBC, pp. 3974–3977 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dwarikanath Mahapatra
    • 1
  • Peter J. Schüffler
    • 1
  • Jeroen A. W. Tielbeek
    • 2
  • Franciscus M. Vos
    • 2
    • 3
  • Joachim M. Buhmann
    • 1
  1. 1.Department of Computer ScienceETH ZurichSwitzerland
  2. 2.Department of RadiologyAcademic Medical CenterThe Netherlands
  3. 3.Quantitative Imaging GroupDelft University of TechnologyThe Netherlands

Personalised recommendations