Accurate Bone Segmentation in 2D Radiographs Using Fully Automatic Shape Model Matching Based On Regression-Voting

  • Claudia Lindner
  • Shankar Thiagarajah
  • J. Mark Wilkinson
  • arcOGEN Consortium
  • Gillian A. Wallis
  • Tim F. Cootes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)


Recent work has shown that using Random Forests (RFs) to vote for the optimal position of model feature points leads to robust and accurate shape model matching. This paper applies RF regression-voting as part of a fully automatic shape model matching (FASMM) system to three different radiograph segmentation problems: the proximal femur, the bones of the knee joint and the joints of the hand. We investigate why this approach works so well and demonstrate that the performance comes from a combination of three properties: (i) The integration of votes from multiple regions around the model point. (ii) The combination of multiple independent votes from each tree. (iii) The use of a coarse to fine strategy. We show that each property can improve performance, and that the best performance comes from using all three. We demonstrate that FASMM based on RF regression-voting generalises well across application areas, achieving state of the art performance in each of the three segmentation problems. This FASMM system provides an accurate and time-efficient way for the segmentation of bony structures in radiographs.


Computational anatomy Random Forests Constrained Local Models statistical shape models bone segmentation 


  1. 1.
    Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cootes, T.F., Ionita, M.C., Lindner, C., Sauer, P.: Robust and Accurate Shape Model Fitting using Random Forest Regression Voting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 278–291. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Cootes, T.F., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  4. 4.
    Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Donner, R., Menze, B.H., Bischof, H., Langs, G.: Fast anatomical structure localization using top-down image patch regression. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 133–141. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Gall, J., Lempitsky, V.: Class-specific Hough forests for object detection. In: CVPR, pp. 1022–1029. IEEE Press (2009)Google Scholar
  7. 7.
    Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient Regression of General-Activity Human Poses from Depth Images. In: ICCV, pp. 415–422. IEEE Press (2011)Google Scholar
  8. 8.
    Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Konukoglu, E., Glocker, B., Zikic, D., Criminisi, A.: Neighbourhood Approximation Forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 75–82. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Lindner, C., Thiagarajah, S., Wilkinson, J.M., Wallis, G.A., Cootes, T.F.: Accurate fully automatic femur segmentation in pelvic radiographs using regression voting. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 353–360. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Seise, M., McKenna, S., Ricketts, I., Wigderowitz, C.: Learning active shape models for bifurcating contours. IEEE Trans. on Medical Imaging 26(5), 666–677 (2007)CrossRefGoogle Scholar
  12. 12.
    Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: CVPR, pp. 511–518. IEEE Press (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudia Lindner
    • 1
  • Shankar Thiagarajah
    • 2
  • J. Mark Wilkinson
    • 2
  • arcOGEN Consortium
    • 1
  • Gillian A. Wallis
    • 3
  • Tim F. Cootes
    • 1
  1. 1.Centre for Imaging SciencesUniversity of ManchesterUK
  2. 2.Department of Human MetabolismUniversity of SheffieldUK
  3. 3.Wellcome Trust Centre for Cell Matrix ResearchUniversity of ManchesterUK

Personalised recommendations