A Symmetric 4D Registration Algorithm for Respiratory Motion Modeling

  • Huanhuan Xu
  • Xin Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)


We propose an effective 4D image registration algorithm for dynamic volumetric lung images. The registration will construct a deforming 3D model with continuous trajectory and smooth spatial deformation, and the model interpolates the interested region in the 4D (3D+T) CT images. The resultant non-rigid transformation is represented using two 4D B-spline functions, indicating a forward and an inverse 4D parameterization respectively. The registration process solves these two functions by minimizing an objective function that penalizes intensity matching error, feature alignment error, spatial and temporal non-smoothness, and inverse inconsistency. We test our algorithm for respiratory motion estimation on public benchmarks and on clinic lung CT data. The experimental results demonstrate the efficacy of our algorithm.


4D Image Registration Respiratory Motion Modeling 


  1. 1.
    Gorbunova, V., Sporring, J., Lo, P., Loeve, M., Tiddens, H., Nielsen, M., Dirksen, A., Bruijne, M.: Mass preserving image registration for lung CT. Medical Image Analysis 16(4), 786–795 (2012)CrossRefGoogle Scholar
  2. 2.
    Metz, C., Klein, S., Schaap, M., van Walsum, T., Niessen, W.: Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach. Medical Image Analysis 15, 238–249 (2011)CrossRefGoogle Scholar
  3. 3.
    Heinrich, M., Jenkinson, M., Brady, S., Schnabel, J.: Mrf-based deformable registration and ventilation estimation of lung CT. IEEE Trans. on Med. Imag. (2013)Google Scholar
  4. 4.
    Wu, G., Wang, Q., Lian, J., Shen, D.: Estimating the 4D respiratory lung motion by spatiotemporal registration and building super-resolution image. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 532–539. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Xue, Z., Wong, K., Wong, S.: Joint registration and segmentation of serial lung CT images for image-guided lung cancer diagnosis and therapy. Computerized Medical Imaging and Graphics 34(1), 55–60 (2010)CrossRefGoogle Scholar
  6. 6.
    Wu, G., Wang, Q., Jia, H., Shen, D.: Feature-based groupwise registration by hierarchical anatomical correspondence detection. Human Brain Mapping 33(2), 253–271 (2012)CrossRefGoogle Scholar
  7. 7.
    Xu, H., Li, X.: Consistent feature-aligned 4d image registration for respiratory motion modeling. In: Int. Symp. on Biom. Imaging, pp. 580–583 (2013)Google Scholar
  8. 8.
    Xu, H., Chen, P., Yu, W., Sawasnt, A., Iyengar, S., Li, X.: Feature-aligned 4D spatiotemporal image registration. In: Int. Conf. on Patt. Recog., pp. 2639–2642 (2012)Google Scholar
  9. 9.
    Christensen, G., Johnson, H.: Consistent image registration. IEEE Transaction on Medical Imaging 20(7), 568–582 (2001)CrossRefGoogle Scholar
  10. 10.
    Vandemeulebroucke, J., Sarrut, D., Clarysse, P.: Point-validated pixel-based breathing thorax model. In: Int. Conf. on the Use of Comp. in Rad. Therapy (2007)Google Scholar
  11. 11.
    Castillo, R., Castillo, E., Guerra, R., Johnson, V.E., McPhail, T., Garg, A.K., Guerrero, T.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phy. in Med. & Bio. 54, 1849–1870 (2009)CrossRefGoogle Scholar
  12. 12.
    Iyengar, S., Li, X., Xu, H., Mukhopadhyay, S., Balakrishnan, N., Sawant, A., Iyengar, P.: Toward more precise radiotherapy treatment of lung tumors. IEEE Computer 45, 59–65 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Huanhuan Xu
    • 1
  • Xin Li
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceLouisiana State UniversityUSA

Personalised recommendations