Skip to main content

A General Image Representation Scheme and Its Improvement for Image Analysis

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2013 (ICANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8131))

Included in the following conference series:

  • 6144 Accesses

Abstract

In this paper, a bio-inspired neural network is developed to represent images and analysis features of images effectively. This model adopts schemes of retinal ganglion cells (GC) working and GCs’ non-classical receptive fields (nCRF) that can dynamically adjust their sizes/scales according to the visual information. Extensive experiments are provided to value the effect of image representing, and experimental results show that this neural network model can represent images at a low cost and with a favor in improving both segmentation and integration processing. Most importantly, the GC-array model provides a basic infrastructure for image semantic extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McIlwain, J.T.: Some evidence concerning the physiological basis of the periphery effect in the cat’s retina. Exp. Brain Res. 1, 265–271 (1966)

    Article  Google Scholar 

  2. Ikeda, H., Wright, M.J.: The outer disinhibitory surround of the retinal ganglion cell receptive field. The Journal of Physiology 226, 511 (1972)

    Google Scholar 

  3. Krüger, J., Fischer, B.: Strong periphery effect in cat retinal ganglion cells. Excitatory responses in ON-and OFF-center neurones to single grid displacements. Exp. Brain Res. 18, 316–318 (1973)

    Google Scholar 

  4. Feghali, J.G., Jin, J.C., Odom, J.V.: Effect of short-term intraocular pressure elevation on the rabbit electroretinogram. Invest. Ophth. Vis. Sci. 32, 2184–2189 (1991)

    Google Scholar 

  5. Shou, T., Wang, W., Yu, H.: Orientation biased extended surround of the receptive field of cat retinal ganglion cells. Neuroscience 98, 207–212 (2000)

    Article  Google Scholar 

  6. Fauqueur, J., Boujemaa, N.: Region-based image retrieval: Fast coarse segmentation and fine color description. Journal of Visual Languages & Computing 15, 69–95 (2004)

    Article  Google Scholar 

  7. Deng, Y., Manjunath, B.S., Kenney, C., Moore, M.S., Shin, H.: An efficient color representation for image retrieval. IEEE Transactions on Image Processing 10, 140–147 (2001)

    Article  MATH  Google Scholar 

  8. Saykol, E., Gudukbay, U., Ulusoy, O.: A histogram-based approach for object-based query-by-shape-and-color in image and video databases. Image Vision Comput. 23, 1170–1180 (2005)

    Article  Google Scholar 

  9. Chaoyi, Q.F.L.: Mathematical Simulation of Disinhibitory Properties of Concentric Receptive Field. Acta Biophysica Sinica 11, 214–220 (1995)

    Google Scholar 

  10. Xianglin, Q., Xiaochuan, P., Yunjiu, W.: A mathematical model of integration field beyond receptive field of cortical neuron. In: Proceedings of the 9th International Conference on Neural Information Processing, ICONIP 2002, vol. 4, pp. 1694–1698 (2002)

    Google Scholar 

  11. Ghosh, K., Sarkar, S., Bhaumik, K.: A possible mechanism of zero-crossing detection using the concept of the extended classical receptive field of retinal ganglion cells. Biol. Cybern. 93, 1–5 (2005)

    Article  MATH  Google Scholar 

  12. Ghosh, K., Sarkar, S., Bhaumik, K.: A possible explanation of the low-level brightness–contrast illusions in the light of an extended classical receptive field model of retinal ganglion cells. Biol. Cybern. 94, 89–96 (2006)

    Article  MATH  Google Scholar 

  13. Hayashi, I., Maeda, T.: Structure Evaluation of Receptive Field Layer in TAM Network, vol. 2, pp. 1541–1547. IEEE (2006)

    Google Scholar 

  14. Kenyon, G.T., Travis, B.J., Theiler, J., George, J.S., Stephens, G.J., Marshak, D.W.: Stimulus-specific oscillations in a retinal model. IEEE Transactions on Neural Networks 15, 1083–1091 (2004)

    Article  Google Scholar 

  15. Perrinet, L., Samuelides, M., Thorpe, S.: Coding static natural images using spiking event times: do neurons cooperate? IEEE Transactions on Neural Networks 15, 1164–1175 (2004)

    Article  Google Scholar 

  16. Wei, H., Zuo, Q., Lang, B.: Multi-scale image analysis based on non-classical receptive field mechanism. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part III. LNCS, vol. 7064, pp. 601–610. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Wei, H., Lang, B., Zuo, Q.: Contour detection model with multi-scale integration based on non-classical receptive field. Neurocomputing (2012)

    Google Scholar 

  18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

    Article  Google Scholar 

  19. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiway cuts, pp. 241–251. ACM (1992)

    Google Scholar 

  20. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour detection based on nonclassical receptive field inhibition. IEEE T. Image Process 12, 729–739 (2003)

    Article  Google Scholar 

  21. Elder, J.H.: Are edges incomplete? Int. J. Comput Vision 34, 97–122 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, H., Zuo, Q., Lang, B. (2013). A General Image Representation Scheme and Its Improvement for Image Analysis. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40728-4_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40727-7

  • Online ISBN: 978-3-642-40728-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics