Skip to main content

Learning Temporally Precise Spiking Patterns through Reward Modulated Spike-Timing-Dependent Plasticity

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2013 (ICANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8131))

Included in the following conference series:

Abstract

Precise neuronal spike timing plays an important role in many aspects of cognitive processing. Here, we explore how a spiking neural network can learn to generate temporally precise spikes in response to a spatio-temporal pattern, through spike-timing-dependent plasticity modulated by a delayed reward signal. An escape noise neuron is implemented as the readout to incorporate the effect of background noise on spike timing. We compare the performance of two different escape rate functions that drive spiking in the readout neuron: the Arrhenius & Current (A&C) and Exponential (EXP) model. Our results show that the network can learn to reproduce target spike patterns containing between 1 and 10 spikes with 10 ms temporal accuracy. We also demonstrate the superior performance of the A&C model over the EXP model for the parameters we consider, especially when reproducing a large number of target spikes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barto, A., Sutton, R.: Reinforcement learning: An introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of Neuroscience 18(24), 10464–10472 (1998)

    Google Scholar 

  3. Bohte, S.: The evidence for neural information processing with precise spike-times: A survey. Natural Computing 3(2), 195–206 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chance, F., Abbott, L., Reyes, A.: Gain modulation from background synaptic input. Neuron 35(4), 773–782 (2002)

    Article  Google Scholar 

  5. El-Laithy, K., Bogdan, M.: A reinforcement learning framework for spiking networks with dynamic synapses. In: Computational Intelligence and Neuroscience 2011, vol. 4 (2011)

    Google Scholar 

  6. Farries, M., Fairhall, A.: Reinforcement learning with modulated spike timing dependent synaptic plasticity. Journal of Neurophysiology 98(6), 3648–3665 (2007)

    Article  Google Scholar 

  7. Florian, R.: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Computation 19(6), 1468–1502 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frémaux, N., Sprekeler, H., Gerstner, W.: Functional requirements for reward-modulated spike-timing-dependent plasticity. The Journal of Neuroscience 30(40), 13326–13337 (2010)

    Article  Google Scholar 

  9. Gerstner, W., Kistler, W.: Spiking neuron models: Single neurons, populations, plasticity. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  10. Grüning, A., Sporea, I.: Supervised learning of logical operations in layered spiking neural networks with spike train encoding. Neural Processing Letters 36(2), 117–134 (2012)

    Article  Google Scholar 

  11. Izhikevich, E.: Solving the distal reward problem through linkage of stdp and dopamine signaling. Cerebral Cortex 17(10), 2443–2452 (2007)

    Article  Google Scholar 

  12. Legenstein, R., Pecevski, D., Maass, W.: A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Computational Biology 4(10), e1000180 (2008)

    Google Scholar 

  13. Morrison, A., Diesmann, M., Gerstner, W.: Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics 98(6), 459–478 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pfister, J., Toyoizumi, T., Barber, D., Gerstner, W.: Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Computation 18(6), 1318–1348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ponulak, F., Kasinski, A.: Supervised learning in spiking neural networks with resume: Sequence learning, classification, and spike shifting. Neural Computation 22(2), 467–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rossum, M.: A novel spike distance. Neural Computation 13(4), 751–763 (2001)

    Article  MATH  Google Scholar 

  17. Sporea, I., Grüning, A.: Supervised learning in multilayer spiking neural networks. Neural Computation 25(2), 473–509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Urbanczik, R., Senn, W.: Reinforcement learning in populations of spiking neurons. Nature Neuroscience 12(3), 250–252 (2009)

    Article  Google Scholar 

  19. Van Rossum, M., Bi, G., Turrigiano, G.: Stable hebbian learning from spike timing-dependent plasticity. The Journal of Neuroscience 20(23), 8812–8821 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gardner, B., Grüning, A. (2013). Learning Temporally Precise Spiking Patterns through Reward Modulated Spike-Timing-Dependent Plasticity. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40728-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40727-7

  • Online ISBN: 978-3-642-40728-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics