Skip to main content

ABC–Fun: A Probabilistic Programming Language for Biology

  • Conference paper
Book cover Computational Methods in Systems Biology (CMSB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8130))

Included in the following conference series:

Abstract

Formal methods have long been employed to capture the dynamics of biological systems in terms of Continuous Time Markov Chains. The formal approach enables the use of elegant analysis tools such as model checking, but usually relies on a complete specification of the model of interest and cannot easily accommodate uncertain data. In contrast, data-driven modelling, based on machine learning techniques, can fit models to available data but their reliance on low level mathematical descriptions of systems makes it difficult to readily transfer methods from one problem to the next. Probabilistic programming languages potentially offer a framework in which the strengths of these two approaches can be combined, yet their expressivity is limited at the moment.

We propose a high-level framework for specifying and performing inference on descriptions of models using a probabilistic programming language. We extend the expressivity of an existing probabilistic programming language, Infer.NET Fun, in order to enable inference and simulation of CTMCs. We demonstrate our method on simple test cases, including a more complex model of gene expression. Our results suggest that this is a promising approach with room for future development on the interface between formal methods and machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Approximate maximum likelihood estimation for stochastic chemical kinetics. EURASIP Journal on Bioinformatics and Systems Biology 2012(1), 9 (2012)

    Article  Google Scholar 

  2. Borgström, J., Gordon, A.D., Greenberg, M., Margetson, J., Van Gael, J.: Measure transformer semantics for Bayesian machine learning. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 77–96. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Boys, R., Wilkinson, D., Kirkwood, T.: Bayesian inference for a discretely observed stochastic kinetic model. Statistics and Computing 18, 125–135 (2008)

    Article  MathSciNet  Google Scholar 

  4. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  5. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: UAI, pp. 220–229 (2008)

    Google Scholar 

  6. Gordon, A., Aizatulin, M., Borgström, J., Claret, G., Graepel, T., Nori, A., Rajamani, S., Russo, C.: A model-learner pattern for Bayesian reasoning. In: Proceedings of the ACM SIGPLAN Conference on Principles of Programming Languages, POPL (2013)

    Google Scholar 

  7. Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press, Cambridge (2010)

    Google Scholar 

  8. Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T., Stumpf, M.P.: ABC-SysBio—approximate Bayesian computation in Python with GPU support. Bioinformatics 26(14), 1797–1799 (2010)

    Article  Google Scholar 

  9. Minka, T., Winn, J., Guiver, J., Knowles, D.: Infer.NET 2.5, Microsoft Research Cambridge (2012), http://research.microsoft.com/infernet

  10. Ocone, A., Millar, A.J., Sanguinetti, G.: Hybrid Regulatory Models: a statistically tractable approach to model regulatory network dynamics. Bioinformatics 29(7), 910–916 (2013)

    Article  Google Scholar 

  11. Opper, M., Ruttor, A., Sanguinetti, G.: Approximate inference for Gaussian-jump processes. In: Advances in Neural Information Processing Systems 24 (2010)

    Google Scholar 

  12. Opper, M., Sanguinetti, G.: Variational inference for Markov jump processes. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems 20, pp. 1105–1112. MIT Press, Cambridge (2008)

    Google Scholar 

  13. Pfeffer, A.: The Design and Implementation of IBAL: A General-Purpose Probabilistic Language. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. The MIT Press (2007)

    Google Scholar 

  14. Ptashne, M., Gann, A.: Genes and signals. Cold Harbor Spring Laboratory Press, New York (2002)

    Google Scholar 

  15. Rao, V., Teh, Y.W.: Fast MCMC sampling for Markov jump processes and continuous time Bayesian networks. In: UAI (2011)

    Google Scholar 

  16. Sanguinetti, G., Ruttor, A., Opper, M., Archambeau, C.: Switching regulatory models of cellular stress response. Bioinformatics 25(10), 1280–1286 (2009)

    Article  Google Scholar 

  17. Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences 104(6), 1760–1765 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., Naef, F.: Mammalian genes are transcribed with widely different bursting kinetics. Science 332(6028), 472–474 (2011)

    Article  Google Scholar 

  19. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface 6(31), 187–202 (2009)

    Article  Google Scholar 

  20. Zechner, C., Pelet, S., Peter, M., Koeppl, H.: Recursive Bayesian estimation of stochastic rate constants from heterogeneous cell populations. In: IEEE CDC-ECE, pp. 5837–5843 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgoulas, A., Hillston, J., Sanguinetti, G. (2013). ABC–Fun: A Probabilistic Programming Language for Biology. In: Gupta, A., Henzinger, T.A. (eds) Computational Methods in Systems Biology. CMSB 2013. Lecture Notes in Computer Science(), vol 8130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40708-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40708-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40707-9

  • Online ISBN: 978-3-642-40708-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics