Skip to main content

Rainfall Prediction for Landfalling Tropical Cyclones: Perspectives of Mitigation

  • Chapter
  • First Online:
Typhoon Impact and Crisis Management

Abstract

The torrential rainfall associated with landfalling tropical cyclones (TCs) often represents the major impact to coastal regions, but at the same time an enormous challenge to meteorologists and forecasts. This chapter first discusses the complex dynamical processes involved in TC landfalls, which are related to the increased surface roughness and reduced surface moisture fluxes of land. The result is often certain patterns of convection and rainfall asymmetry in the landfalling TCs, but these patterns are not well explained by current theories or conceptual models. With emphasis of development of rainfall prediction techniques according to the needs of mitigation, the requirements on the skill of rainfall forecasts from the perspectives of mitigation are reviewed. Then, the operation and performance of several statistical TC rainfall models are discussed including the rainfall climatology-persistence model (R-CLIPER) for the Taiwan area. A topographic component is developed for R-CLIPER through multiple regression analyses, which improves the model’s performance in reproducing the local extreme rain that is lacking in the original model. Finally, the importance of utilizing remote-sensing data in TC rainfall prediction is discussed, and how TC rainfall statistical models can be applied to risk analyses under the consideration of global changes.

Prepared forRemote Sensing of Typhoon Impact and Crisis Management”.

May 2011

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bender, M.A., Tuleya, R.E., Kurihara, Y.: A numerical study of the effect of a mountain range on a landfalling tropical cyclone. Mon. Wea. Rev. 113, 567–583 (1985)

    Article  Google Scholar 

  • Bender, M.A., Tuleya, R.E., Kurihara, Y.: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev. 115, 130–155 (1987)

    Article  Google Scholar 

  • Bender, M.A., Knutson, T.R., Tuleya, R.E., Sirutis, J.J., Vecchi, G.A., Garner, S.T., Held, I.M.: Modeled impact of anthropogenic warming on the frequency of intense atlantic hurricanes. Science 327, 454–458 (2010)

    Article  Google Scholar 

  • Bengtsson, L., Hodges, K.I., Esch, M.: Tropical cyclones in a T159 resolution global climate model: comparison with observations and reanalyses. Tellus 59A, 396–416 (2007a)

    Article  Google Scholar 

  • Bengtsson, L., Hodges, K.I., Esch, M., Keenlyside, N., Kornblueh, L., Luo, J–.J., Yamagata, T.: How may tropical cyclones change in a warmer climate? Tellus 59A, 539–561 (2007b)

    Article  Google Scholar 

  • Blackwell, K.G.: The evolution of Hurricane Danny (1997) at landfall: Doppler-observed eyewall replacement, vortex contraction/intensification, and low-level wind maxima. Mon. Wea. Rev. 128, 4002–4016 (2000)

    Article  Google Scholar 

  • Chan, J.C.L.: Comment on changes in tropical cyclone number, duration and intensity in a warming environment. Nature 311, 1713 (2006)

    Google Scholar 

  • Chan, J.C.L.: Changes in track and structure of tropical cyclones near landfall. In: Extended Abstract, 29th Conference on Hurricanes and Tropical Meteorology, Tuscon, Arizona, U.S., American Meteorological Society (2010)

    Google Scholar 

  • Chan, J.C.L., Liang, X.: Convective asymmetries associated with tropical cyclone landfall. Part I: f -plane simulations. J. Atmos. Sci. 60, 1560–1567 (2003)

    Article  Google Scholar 

  • Chan, J.C.L., Liu, K.S., Ching, S.E., Lai, E.S.T.: Asymmetric distribution of convection associated with tropical cyclones making landfall along the south China coast. Mon. Wea. Rev. 132, 2410–2420 (2004)

    Article  Google Scholar 

  • Chang, C.P., Yeh, T.-C., Chen, J.-M.: Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Wea. Rev. 121, 734–752 (1993)

    Article  Google Scholar 

  • Chang, L.T.-C., Chen, G.T.-J., Cheung, K.K.W.: Mesoscale simulation and moisture budget analyses of a heavy rain event over southern Taiwan in the Meiyu season. Meteor. Atmos. Phys. 101, 43–63 (2008)

    Article  Google Scholar 

  • Chang, L.T.-C., Cheung, K.K.W., McAneney, J.: A statistical analysis of the topographic effect on rainfall enhancement for tropical cyclones in the Taiwan area, p. 26, Research Report for Swiss Re, Risk Frontiers Natural Hazard Research Centre, Macquarie Univeristy (2011)

    Google Scholar 

  • Chang, S.: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev. 110, 1255–1270 (1982)

    Article  Google Scholar 

  • Chen, C.-Y., Lin, L.-Y., Yu, F.-C., Lee, C.-S., Tseng, C.-C., Wang, A.-X., Cheung, K.K.W.: Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS. Nat. Hazards 40, 447–461 (2007). doi:10.1007/s11069-006-9004-2

    Article  Google Scholar 

  • Chen, C.-Y., Chen, L.-K., Yu, F.-C., Lin, S.-C., Lin, Y.-C., Lee, C.-L., Wang, Y.-T., Cheung, K.W.: Characteristics analysis for the flash flood-induced debris flow. Nat. Hazards 47, 245–261 (2008). doi:10.1007/s11069-008-9217-7

    Article  Google Scholar 

  • Cheung, K.K.W., McAneney, J.: Development of a statistical model for tropical cyclone rainfall in Taiwan for reinsurance loss analyses: preliminary results, p. 29, Research Report for Swiss Re, Risk Frontiers Natural Hazard Research Centre, Macquarie Univeristy (2008)

    Google Scholar 

  • Cheung, K.K.W., Huang, L.-R., Lee, C.-S.: Characteristics of rainfall during tropical cyclone periods in Taiwan. Nat. Hazards Earth Syst. Sci. 8, 1463–1474 (2008)

    Article  Google Scholar 

  • Dastoor, A., Krisiinamurti, T.N.: The landfall and structure of a tropical cyclone: the sensitivetity of model predictions to soil moisture parameterizations. Boundary-Layer Meteorol. 55, 345–380 (1991)

    Article  Google Scholar 

  • Dunn, G.E., Miller, B.I.: Atlantic Hurricanes, p. 377. Louisiana State University Press, Louisiana (1960)

    Google Scholar 

  • Ebert, E.E., Janowiak, J.E., Kidd, C.: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc. 88, 47–64 (2007)

    Article  Google Scholar 

  • Emanuel, K.: Increasing destructiveness of tropical cyclones over the past 30 years. Science 436, 686–688 (2005)

    Google Scholar 

  • Emanuel, K., Sundararajan, R., Williams, J.: Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc. 89, 347–367 (2008)

    Article  Google Scholar 

  • Farfan, L.M., Zehnder, J.A.: An analysis of the landfall of Hurricane Nora (1997). Mon. Wea. Rev. 129, 2073–2088 (2001)

    Article  Google Scholar 

  • Gao, S., Meng, Z., Zhang, F., Bosart, L.F.: Observational analysis of heavy rainfall mechanisms associated with severe tropical storm Bilis (2006) after its landfall. Mon. Wea. Rev. 137, 1881–1897 (2009)

    Article  Google Scholar 

  • Gualdi, S., Scoccimarro, E., Navarra, A.: Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J. Climate 21, 5204–5228 (2008)

    Article  Google Scholar 

  • Hasegawa, A., Emori, S.: Tropical cyclones and associated precipitation over the western North Pacific: T106 atmospheric GCM simulation for present-day and doubled CO2 climates. SOLA 1, 145–148 (2005)

    Article  Google Scholar 

  • Ho, F.P., Su, J.C., Hanevich, K.L., Smith, R.J., Richards, F.P.: Hurricane climatology for the Atlantic and Gulf Coasts of the United States, p. 195, NOAA Technical Report NWS 38 (1987)

    Google Scholar 

  • Jiang, H., Halverson, J.B., Simpson, J., Zipser, E.J.: Hurricane “rainfall potential” derived from satellite observations aids overland rainfall prediction. J. Appl. Meteor. Climatol. 47, 944–959 (2008)

    Article  Google Scholar 

  • Jones, R.W.: A simulation of hurricane landfall with a numerical model featuring latent heating by the resolvable scales. Mon. Wea. Rev. 115, 2279–2297 (1987)

    Article  Google Scholar 

  • Kaplan, J., DeMaria, M.: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor. 34, 2499–2512 (1995)

    Article  Google Scholar 

  • Kaplan, J., DeMaria, M., Knaff, J.A.: A revised tropical cyclone rapid intensification index for the Atlantic and east Pacific basins. Weather Forecast. 25, 220–241 (2010)

    Article  Google Scholar 

  • Knutson, T., Sirutis, J., Garner, S., Wecchi, G., Held, I.: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming condition. Nat. Geosci. p. 22. (2008). doi:10.1038/ngeo202

    Google Scholar 

  • Knutson, T.R., McBride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J.P., Srivastave, A.K., Sugi, M.: Tropical cyclones and climate change. Nature Geosci., 3. doi:10.1038/ngeo779 (2010)

  • Koteswaram, P., Gaspar, S.: The surface structure of tropical cyclones in the Indian area. Ind. J. Meteor. Geophys. 7, 339–352 (1956)

    Google Scholar 

  • Krajewski, W.F., Gabriele, V., Smith, J.A.: RADAR-rainfall uncertainties. Bull. Amer. Meteor. Soc. 91, 87–94 (2010). doi:10.1175/2009BAMS2747.1

    Article  Google Scholar 

  • Landsea, C.W.: Hurricanes and global warming. Science 438, E11–E12 (2005)

    Google Scholar 

  • LaRow, T., Lim, Y.-K., Shin, D., Chassignet, E., Cocke, S.: Atlantic basin seasonal hurricane simulations. J. Climate 21, 3191–3206 (2008)

    Article  Google Scholar 

  • Lee, C.-S., Huang, L.-R., Shen, H.-S., Wang, S.-T.: A climatological model for forecasting typhoon rainfall in Taiwan. Nat. Hazards 37, 87–105 (2006)

    Article  Google Scholar 

  • Lee, C.-S., et al.: Improvements to a river basin and catchment-based quantitative precipitation forecast technique during meiyu and typhoon periods (I), p. 248, Research report for the Water Resources Agency, Taiwan, National Taiwan University (2008) (In Chinese, English abstract available)

    Google Scholar 

  • Li, Y., Cheung, K.K.W., Chan, J.C.L.: An observational study on tropical cyclone landfall processes in the northwestern Australian region. Presentation at the AMOS and MetSoc NZ Joint Conference: Extreme Weather, Te Papa, Wellington, New Zealand, Australian Meteorological and Oceanographic Society and the Meteorological Society of New Zealand (2011)

    Google Scholar 

  • Li, Y., Cheung, K.K.W., Chan, J.C.L., Tokuno, M.: Rainfall distribution of five landfalling tropical cyclones in the northwestern Australian region. Aust. Met. Oceanog. J. 63, 325–338 (2013)

    Google Scholar 

  • Lin, Y.-L., Han, J.G., Hamilton, D.W., Huang, C.-Y.: Orographic influence on a drifting cyclone. J. Atmos. Sci. 56, 534–562 (1999)

    Article  Google Scholar 

  • Lin, Y.-L., Ensley, D.B., Chiao, S., Huang, C.-Y.: Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev. 130, 2929–2950 (2002)

    Article  Google Scholar 

  • Lonfat, M., Marks Jr, F.D., Chen, S.: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: a global perspective. Mon. Wea. Rev. 132, 1645–1660 (2004)

    Article  Google Scholar 

  • Lonfat, M., Rogers, R., Marchok, T., Marks Jr, F.D.: A parametric model for predicting hurricane rainfall. Mon. Wea. Rev. 135, 3086–3097 (2007)

    Article  Google Scholar 

  • Marchok, T., Rogers, R., Tuleya, R.: Validation schemes for tropical cyclone quantitative precipitation forecasts: evaluation of operational models for U.S. landfalling cases. Weather Forecast. 22, 726–746 (2007)

    Article  Google Scholar 

  • Marks Jr, F.D.: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev. 113, 909–930 (1985)

    Article  Google Scholar 

  • Marks, F.D., Kappler, G., DeMaria, M.: Development of a tropical cyclone rainfall climatology and persistence (R-CLIPER) model. In: Preprints, 25th Conference Hurricane and Tropical Meteorology, pp. 327–328, San Diego, American. Meteorological Society (2002)

    Google Scholar 

  • Miller, B.L.: A study of the filling of Hurricane Donna (1960) over land. Mon. Wea. Rev. 92, 389–406 (1964)

    Article  Google Scholar 

  • Murakami, H., Wang, B.: Future change of north Atlantic tropical cyclone tracks: projection by a 20 km-mesh global atmospheric model. J. Climate 23, 2699–2721 (2010)

    Article  Google Scholar 

  • Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S., Noda, A.: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan 84, 259–276 (2006)

    Article  Google Scholar 

  • Parrish, J.R., Burpee, R.W., Marks Jr, F.D., Grebe, R.: Rain patterns observed by digitized radar during the landfall of Hurricane Frederic (1979). Mon. Wea. Rev. 110, 1933–1944 (1982)

    Article  Google Scholar 

  • Powell, M.D.: The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev. 110, 1912–1932 (1982)

    Article  Google Scholar 

  • Powell, M.D.: Changes in the low-level kinematic and thermodynamic structure of Hurricane Alicia (1983) at landfall. Mon. Wea. Rev. 115, 75–99 (1987)

    Article  Google Scholar 

  • Ramsay, H.A., Leslie, L.M.: The effects of complex terrain on severe landfalling tropical cyclone Larry (2006) over Northeast Australia. Mon. Wea. Rev. 136, 4334–4354 (2008)

    Article  Google Scholar 

  • Rappaport, E.N., Franklin, J.L., Schumacher, A.B., DeMaria, M., Shay, L.K., Gibney, E.J.: Tropical cyclone intensity change before U.S. Gulf coast landfall. Weather Forecast. 25, 1380–1396 (2010)

    Article  Google Scholar 

  • Saffir, H.S.: Design and construction requirements for hurricane resistant construction, p. 20. American Society of Civil Engineers, Preprint Number 2830 (1977)

    Google Scholar 

  • Schwerdt, R.W., Ho, F.P., Watkinds, R.R.: Meteorological criteria for standard project hurricane and probable maximum hurricane windfields, Gulf and East Coasts of the United States, p. 317, NOAA Technical Report NWS 23 (1979)

    Google Scholar 

  • Simpson, R.H.: A proposed scale for ranking hurricanes by intensity. In: Minutes of the 8th NOAA, NWS Hurricane Conference, Miami, Florida, National Oceanic and Atmospheric Administration (1971)

    Google Scholar 

  • Tuleya, R.E., Kurihara, Y.: A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci. 35, 242–257 (1978)

    Google Scholar 

  • Tuleya, R.E., DeMaria, M., Kuligowski, R.J.: Evaluation of GFDL and simple statistical model rainfall forecasts for US landfalling tropical storms. Weather Forecast. 22, 56–70 (2007)

    Article  Google Scholar 

  • Vecchi, G.A., Swanson, K.L., Soden, B.L.: Whither hurricane activity? Science 322, 687–689 (2008)

    Article  Google Scholar 

  • Wang, Y., Wu, C–.C.: Current understanding of tropical cyclone structure and intensity changes: a review. Meteorol. Atmos. Phys. 87, 257–278 (2004)

    Article  Google Scholar 

  • Webster, P.J., Holland, G.J., Curry, J.A., Chang, H.-R.: Changes in tropical cyclone number, duration and intensity in a warming environment. Nature 309, 1844–1846 (2005)

    Google Scholar 

  • Wong, M.L.M., Chan, J.C.L., Zhou, W.: A simple empirical model for estimating the intensity change of tropical cyclones after landfall along the South China coast. J. Appl. Meteor. Climatol. 47, 326–338 (2008)

    Article  Google Scholar 

  • Wu, C–.C., Kuo, Y.-H.: Typhoons affecting Taiwan: current understanding and future challenges. Bull. Amer. Meteor. Soc. 80, 67–80 (1999)

    Article  Google Scholar 

  • Wu, C–.C.: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev. 129, 1533–1549 (2001)

    Article  Google Scholar 

  • Wu, C–.C., Yen, T.-H., Kuo, Y.-H., Wang, W.: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: the topographic effect. Weather Forecast. 17, 1001–1015 (2002)

    Article  Google Scholar 

  • Wu, C.-C., Cheung, K.K.W., Lo, Y.-Y.: Numerical study of the heavy rainfall event due to the interaction of Typhoon Babs (1998) and the northeasterly monsoon. Mon. Wea. Rev. 137, 2049–2064 (2009)

    Article  Google Scholar 

  • Yeh, T.-C., Elsberry, R.L.: Interaction of typhoons with the Taiwan orography. Part I: upstream track deflections. Mon. Wea. Rev. 121, 3193–3212 (1993a)

    Article  Google Scholar 

  • Yeh, T.-C., Elsberry, R.L.: Interaction of typhoons with the Taiwan orography. Part II: continuous and discontinuous tracks across the island. Mon. Wea. Rev. 121, 3213–3233 (1993b)

    Article  Google Scholar 

  • Yu, Z., Yu, H., Chen, P., Qian, C., Yue, C.: Verification of tropical cyclone-related satellite precipitation estimates in mainland China. J. Appl. Meteor. Climatol. 48, 2227–2241 (2009)

    Article  Google Scholar 

  • Zehnder, J.A.: The influence of large-scale topography on barotropic vortex motion. J. Atmos. Sci. 50, 2519–2532 (1993)

    Article  Google Scholar 

  • Zhao, M., Held, I.M., Lin, S.-J., Vecchi, G.A.: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. J. Climate 22, 6653–6678 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The first two authors (KKWC and LTCC) would like to thank Swiss Re for supporting their work on the rainfall climatology-persistence model. The continuous encouragement, support and comments from Prof. John McAneney of the Risk Frontiers Natural Hazards Research Centre of Macquarie University are much appreciated. The third author (YL) is supported by the Higher Degree Research project support fund of Macquarie University. The third author (YL) was supported by a Macquarie University Research Excellence Scholarship (MQRES) and Higher Degree project support fund. YL is currently supported by a postdoctoral fellowship from the City University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin K. W. Cheung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheung, K.K.W., Chang, L.TC., Li, Y. (2014). Rainfall Prediction for Landfalling Tropical Cyclones: Perspectives of Mitigation. In: Tang, D., Sui, G. (eds) Typhoon Impact and Crisis Management. Advances in Natural and Technological Hazards Research, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40695-9_8

Download citation

Publish with us

Policies and ethics