Skip to main content

PET/MR in Brain Imaging

  • Chapter
  • First Online:
PET/MRI

Abstract

The new hybrid PET/MR systems permit optimal spatial and temporal coregistration of structural, functional, and molecular data. The real-time high-resolution multiparametric imaging improves the clinical evaluation of disorders of the brain and offers new options for research in the central nervous system. This review discusses the advantages of integrated PET/MR for brain imaging and indicates possible applications in dementia, degenerative disorders, epilepsy, brain tumors, cerebrovascular disease, and inflammatory diseases. The integrated assessment of various parameters additionally will improve partial volume correction of metabolic and functional values and facilitate the modeling of dynamic data. PET/MR may also help to understand complex metabolic processes and permit insight into functional and structural connectivity in the brain. The multiple noninvasive investigative approaches offered simultaneously by PET/MR might gain a special impact in translational brain research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badgaiyan RD, Fischman AJ, et al. Striatal dopamine release in sequential learning. Neuroimage. 2007;38(3):549–56.

    Article  PubMed  Google Scholar 

  2. Becker JA, Hedden T, et al. Amyloid-beta associated cortical thinning in clinically normal elderly. Ann Neurol. 2011;69(6):1032–42.

    Article  PubMed  CAS  Google Scholar 

  3. Beyer T, Townsend DW, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369–79.

    PubMed  CAS  Google Scholar 

  4. Bjorklund LM, Sanchez-Pernaute R, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A. 2002;99(4):2344–9.

    Article  PubMed  CAS  Google Scholar 

  5. Bjornerud A, Sorensen AG, et al. T(1)- and T(2)-dominant extravasation correction in DSC-MRI: part I–theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab. 2011;31(10):2041–53.

    Article  PubMed  CAS  Google Scholar 

  6. Blinkenberg M, Mathiesen HK, et al. Cerebral metabolism, magnetic resonance spectroscopy and cognitive dysfunction in early multiple sclerosis: an exploratory study. Neurol Res. 2012;34(1):52–8.

    Article  PubMed  CAS  Google Scholar 

  7. Boss A, Bisdas S, et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med. 2010;51(8):1198–205.

    Article  PubMed  Google Scholar 

  8. Catana C, Benner T, et al. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med. 2011;52(1):154–61.

    Article  PubMed  Google Scholar 

  9. Catana C, Procissi D, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A. 2008;105(10):3705–10.

    Article  PubMed  CAS  Google Scholar 

  10. Cherry SR. The 2006 Henry N. Wagner lecture: of mice and men (and positrons)–advances in PET imaging technology. J Nucl Med. 2006;47(11):1735–45.

    PubMed  CAS  Google Scholar 

  11. Cho ZH, Son YD, et al. A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain. Proteomics. 2008;8(6):1302–23.

    Article  PubMed  CAS  Google Scholar 

  12. Cho ZH, Son YD, et al. Observation of glucose metabolism in the thalamic nuclei by fusion PET/MRI. J Nucl Med. 2011;52(3):401–4.

    Article  PubMed  CAS  Google Scholar 

  13. Delso G, Furst S, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22.

    Article  PubMed  Google Scholar 

  14. Drzezga A, Becker JA, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain. 2011;134(Pt 6):1635–46.

    Article  PubMed  Google Scholar 

  15. Drzezga A, Grimmer T, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med. 2005;46(10):1625–32.

    PubMed  CAS  Google Scholar 

  16. Drzezga A, Souvatzoglou M, et al. First clinical experience of integrated whole-body PET/MR. Comparison to PET/CT in patients with oncological diagnoses. J Nucl Med. 2012;53(6):845–55.

    Article  PubMed  Google Scholar 

  17. Eggers C, et al. Imaging of acetylcholine esterase activity in brainstem nuclei involved in regulation of sleep and wakefulness. Eur J Neurol. 2007;14:690–3.

    Article  PubMed  CAS  Google Scholar 

  18. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986;83:1140–4.

    Article  PubMed  CAS  Google Scholar 

  19. Grosu AL, Weber WA, et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(2):511–19.

    Article  PubMed  CAS  Google Scholar 

  20. Heiss WD. The ischemic penumbra: correlates in imaging and implications for treatment of ischemic stroke. The Johann Jacob wepfer award 2011. Cerebrovasc Dis. 2011;32(4):307–20.

    Article  PubMed  Google Scholar 

  21. Herholz K, Coope D, et al. Metabolic and molecular imaging in neuro-oncology. Lancet Neurol. 2007;6(8):711–24.

    Article  PubMed  CAS  Google Scholar 

  22. Herholz K, Weisenbach S, et al. In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage. 2004;21:136–43.

    Article  PubMed  CAS  Google Scholar 

  23. Hoehn M, Wiedermann D, et al. Cell tracking using magnetic resonance imaging. J Physiol. 2007;584(Pt 1):25–30.

    Article  PubMed  CAS  Google Scholar 

  24. Jack Jr CR, Vemuri P, et al. Evidence for ordering of Alzheimer disease biomarkers. Arch Neurol. 2011;68(12):1526–35.

    Article  PubMed  Google Scholar 

  25. Jacobs A, Voges J, et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet. 2001;358:727–9.

    Article  PubMed  CAS  Google Scholar 

  26. Kalbe E, Voges J, et al. Frontal FDG-PET activity correlates with cognitive outcome after STN-DBS in Parkinson disease. Neurology. 2009;72(1):42–9.

    Article  PubMed  CAS  Google Scholar 

  27. Kida I, Hyder F. Physiology of functional magnetic resonance imaging: energetics and function. Methods Mol Med. 2006;124:175–95.

    PubMed  Google Scholar 

  28. Kwee S, Ernst T. Total choline at 1H-MRS and [18F]-fluoromethylcholine uptake at PET. Mol Imaging Biol. 2010;12(4):424–5; author reply 426.

    Article  PubMed  Google Scholar 

  29. Kwee SA, Coel MN, et al. Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging. 2004;14(3):285–9.

    PubMed  Google Scholar 

  30. Leontiev O, Buxton RB. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. Neuroimage. 2007;35(1):175–84.

    Article  PubMed  Google Scholar 

  31. Lin AL, Fox PT, et al. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc Natl Acad Sci U S A. 2010;107(18):8446–51.

    Article  PubMed  CAS  Google Scholar 

  32. Lopinto-Khoury C, Sperling MR, et al. Surgical outcome in PET-positive, MRI-negative patients with temporal lobe epilepsy. Epilepsia. 2012;53(2):342–8.

    Article  PubMed  Google Scholar 

  33. Morris P, Bachelard H. Reflections on the application of 13C-MRS to research on brain metabolism. NMR Biomed. 2003;16(6–7):303–12.

    Article  PubMed  CAS  Google Scholar 

  34. Okello A, Koivunen J, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73(10):754–60.

    Article  PubMed  CAS  Google Scholar 

  35. Owen DR, Piccini P, et al. Towards molecular imaging of multiple sclerosis. Mult Scler. 2011;17(3):262–72.

    Article  PubMed  Google Scholar 

  36. Pauleit D, Floeth F, et al. O-(2-[18F]fluoroethyl)-l-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128(Pt 3):678–87.

    Article  PubMed  Google Scholar 

  37. Rachinger W, Goetz C, et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery. 2005;57(3):505–11; discussion 505–511.

    Article  PubMed  Google Scholar 

  38. Rueger MA, Backes H, et al. Noninvasive imaging of endogenous neural stem cell mobilization in vivo using positron emission tomography. J Neurosci. 2010;30(18):6454–60.

    Article  PubMed  CAS  Google Scholar 

  39. Schlemmer HP, Pichler BJ, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248(3):1028–35.

    Article  PubMed  Google Scholar 

  40. Schmand M, Burbar Z, et al. BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med Abstr Book. 2007;48:45P, No. 151.

    Google Scholar 

  41. Schmidt KC, Turkheimer FE. Kinetic modeling in positron emission tomography. Q J Nucl Med. 2002;46(1):70–85.

    PubMed  CAS  Google Scholar 

  42. Sheline YI, Raichle ME, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry. 2010;67(6):584–7.

    Article  PubMed  CAS  Google Scholar 

  43. Song AW, Harshbarger T, et al. Functional activation using apparent diffusion coefficient-dependent contrast allows better spatial localization to the neuronal activity: evidence using diffusion tensor imaging and fiber tracking. Neuroimage. 2003;20(2):955–61.

    Article  PubMed  Google Scholar 

  44. Stankoff B, Freeman L, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-(1)(1)C]-2-(4′-methylaminophenyl)- 6-hydroxybenzothiazole. Ann Neurol. 2011;69(4):673–80.

    Article  PubMed  CAS  Google Scholar 

  45. Tailor DR, Baumgardner JE, et al. Proton MRI of metabolically produced H2 17O using an efficient 17O2 delivery system. Neuroimage. 2004;22(2):611–18.

    Article  PubMed  Google Scholar 

  46. Thiel A, Habedank B, et al. From the left to the right: how the brain compensates progressive loss of language function. Brain Lang. 2006;98:57–65.

    Article  PubMed  Google Scholar 

  47. Thiel A, Radlinska BA, et al. The temporal dynamics of poststroke neuroinflammation: a longitudinal diffusion tensor imaging-guided PET study with 11C-PK11195 in acute subcortical stroke. J Nucl Med. 2010;51(9):1404–12.

    Article  PubMed  CAS  Google Scholar 

  48. Thiel A, Schumacher B, et al. Direct demonstration of transcallosal disinhibition in language networks. J Cereb Blood Flow Metab. 2006;26(9):1122–7.

    PubMed  Google Scholar 

  49. van Kuyck K, Gabriels L, et al. Behavioural and physiological effects of electrical stimulation in the nucleus accumbens: a review. Acta Neurochir Suppl. 2007;97(Pt 2):375–91.

    Article  PubMed  Google Scholar 

  50. Vander Borght T, Asenbaum S, et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging. 2006;33(11):1374–80.

    Article  PubMed  CAS  Google Scholar 

  51. Varrone A, Asenbaum S, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36(12):2103–10.

    Article  PubMed  Google Scholar 

  52. Volkow ND, Wang G-J, et al. Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol. 2012;52:321–36.

    Article  PubMed  CAS  Google Scholar 

  53. Weber WA, Czernin J, et al. Technology Insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract Oncol. 2008;5(1):44–54.

    Article  PubMed  CAS  Google Scholar 

  54. Wehrl HF, Judenhofer MS, et al. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S56–68.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

WDH has been supported by the Max Planck Society and by the WDH Foundation. AD has been supported by the DFG (Deutsche Forschungsgemeinschaft, Großgeräteinitiative), who funded the installation of the PET/MR scanner at the Technische Universität München. The scanner is operated by a consortium of the Departments of Nuclear Medicine and Radiology of the Technische Universität München, Munich, and of the Ludwig-Maximilians-Universität München, Munich. Furthermore, this work was supported by grants of the DFG [DR 445/3-1, 4-1 to A.D.]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Dieter Heiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heiss, WD., Drzezga, A. (2014). PET/MR in Brain Imaging. In: Carrio, I., Ros, P. (eds) PET/MRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40692-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40692-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40691-1

  • Online ISBN: 978-3-642-40692-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics