Skip to main content

Complementary Flyover and Rover Sensing for Superior Modeling of Planetary Features

  • Chapter
  • First Online:
Book cover Field and Service Robotics

Abstract

This paper presents complementary flyover and surface exploration for reconnaissance of planetary point destinations, like skylights and polar crater rims, where local 3D detail matters. Recent breakthroughs in precise, safe landing enable spacecraft to touch down within a few hundred meters of target destinations. These precision trajectories provide unprecedented access to bird’s-eye views of the target site and enable a paradigm shift in terrain modeling and path planning. High-angle flyover views penetrate deep into concave features while low-angle rover perspectives provide detailed views of areas that cannot be seen in flight. By combining flyover and rover sensing in a complementary manner, coverage is improved and rover trajectory length is reduced by 40 %. Simulation results for modeling a lunar skylight are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code for this operation is a vectorized version of an implementation by Jesus Mena-Chalco, available on MATLAB Central: http://www.mathworks.com/matlabcentral/fileexchange/26852

References

  1. G. Cushing, T. Titus, E. Maclennan, Orbital observations of martian caveentrance candidates, in First International Planetary Caves Workshop, Carlsbad, NM 2011

    Google Scholar 

  2. J.W. Ashley, M.S. Robinson, B.R. Hawke, A. Boyd, R.V. Wagner, E.J. Speyerer, H. Hiesinger, C.H. van der Bogert, Lunar caves in mare deposits imaged by the LROC narrow angle camera, in First International Planetary Caves Workshop, Carlsbad, NM 2011

    Google Scholar 

  3. J.W. Ashley, A.K. Boyd, H. Hiesinger, M.S. Robinson, T. Tran, C.H. van der Bogert, LROC science team: lunar pits: sublunarean voids and the nature of mare emplacement, in LPSC, The Woodlands, TX 2011

    Google Scholar 

  4. H. Riris, J. Cavanaugh, X. Sun, P. Liivia, M. Rodriguez, G. Neuman, The Lunar Orbiter Laser Altimeter (LOLA) on nasa’s lunar reconnaissance orbiter (LRO) mission, in International Conference on Space Optics, Rhodes, Greece 2010

    Google Scholar 

  5. M. Robinson, S. Brylow, M. Tschimmel, D. Humm, S. Lawrence, P. Thomas, B. Denevi, E. Bowman-Cisneros, J. Zerr, M. Ravine, M. Caplinger, F. Ghaemi, J. Schaffner, M. Malin, P. Mahanti, A. Bartels, J. Anderson, T. Tran, E. Eliason, A. McEwen, E. Turtle, B. Jolliff, H. Hiesinger, Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev. 150, 81–124 (2010)

    Google Scholar 

  6. R. Li, S.W. Squyres, R. Arvidson, B. Archinal, J. Bell, Y. Cheng, L. Crumpler, D.J. Des Marais, K. Di, T.A. Ely, M. Golombek, E. Graat, J. Grant, J. Guinn, A. Johnson, R. Greeley, R. Kirk, M. Maimone, L.H. Matthies, M. Malin, T. Parker, M. Sims, L.A. Soderblom, S. Thompson, J. Wang, P. Whelley, F. Xu, Initial results of rover localization and topographic mapping for the 2003 mars exploration rover mission. Photogram. Eng. Remote Sens. 71(10), 1129–1142 (2005)

    Article  Google Scholar 

  7. R. Li, S. He, Y. Chen, M. Tang, P. Tang, K. Di, L. Matthies, R.E. Arvidson, S.W. Squyers, L.S. Crumpler, T. Parker, M. Sims, MER Spirit rover localization: Comparison of ground image-and orbital image-based methods and science applications. JGR 116, 1–12 (2011)

    Google Scholar 

  8. R. Li, K. Di, J. Hwangbo, Y. Chen, A.S. Team, Rigorous photogrammetric processing of HiRISE stereo images and topographic mapping at mars exploration rover landing sites, in LPSC, League City, 2008

    Google Scholar 

  9. S. Squyres, A. Knoll, R. Arvidson, J. Ashley, J.I. Bell, W. Calvin, P. Christensen, B. Clark, B. Cohen, P. de Souza, L. Edgar, W. Farrand, I. Fleischer, R. Gellert, M. Golombeck, J. Grant, J. Grotzinger, A. Hayes, H. Herkenhoff, J. Johnson, B. Jolliff, G. Klingelhofer, A. Knudson, R. Li, T. McCoy, S. McLennan, D. Ming, D. Mittlefehldt, R. Morris, J.J. Rice, C. Schroder, R. Sullivan, A. Yen, R. Yingst, Exploration of Victoria Crater by the mars rover opportunity. Science 324(5930), 1058–1061 (2009)

    Google Scholar 

  10. R. Pito, A sensor-based solution to the gnext best viewh problem, in Proceedings of International Conference on Pattern Recognition 1996

    Google Scholar 

  11. K. Nagatani, T. Matsuzawa, K. Yoshida, Scan-point planning and 3-d map building for a 3-d laser range scanner in an outdoor environment, in FSR, 2009

    Google Scholar 

  12. E. Kruse, R. Gutsche, F.M. Wahl, Efficient, iterative, sensor based 3-d map building using rating functions in configuration space, in ICRA, vol. 2, (Minneapolis, Minnesota, 1996), pp. 1067–1072

    Google Scholar 

  13. R. Sawhney, K. Krishna, K. Srinathan, On fast exploration in 2d and 3d terrains with multiple robots, in Proceedings of International Conference on Autonomous Agents and Multiagent Systems, 2009

    Google Scholar 

  14. G.A. Hollinger, B. Englot, F. Hover, U. Mitra, G.S. Sukhatme, Uncertaintydriven view planning for underwater inspection, in ICRA, 2012

    Google Scholar 

  15. J. Amanatides, A. Woo, A fast voxel traversal algorithm for ray tracing, in Proceedings of Eurographics, 1987

    Google Scholar 

  16. M.S. Darms, P.E. Rybski, C. Baker, C. Urmson, Obstacle detection and tracking for the urban challenge. IEEE Trans. Intell. Transp. Syst. 10(3), 475–485 (2009)

    Google Scholar 

  17. M. Wagner, S. Heys, D. Wettergreen, J. Teza, D. Apostolopoulos, G. Kantor, W. Whittaker, Design and control of a passively steered, dual axle vehicle. in International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2005

    Google Scholar 

  18. R.D. Braun, R.M. Manning, Mars exploration entry, descent and landing challenges, in IEEE Aerospace Conference, 2006

    Google Scholar 

  19. NASA Marshall Space Flight Center: Lunar surface models. NASA space vehicle design criteria (Environment) NASA-SP-8023, NASA (1969)

    Google Scholar 

  20. Blender Foundation: Blender 2.59 (2011), www.blender.org

    Google Scholar 

  21. D. Lowe, Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the NASA Innovative Advanced Concepts program under contract NNX11AR42G. The authors would also like to thank NVIDIA for donation of a machine that was used in the high-fidelity simulation of terrain done for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather L. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, H.L., Wong, U., Peterson, K.M., Koenig, J., Sheshadri, A., Whittaker, W.L.R. (2014). Complementary Flyover and Rover Sensing for Superior Modeling of Planetary Features. In: Yoshida, K., Tadokoro, S. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40686-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40686-7_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40685-0

  • Online ISBN: 978-3-642-40686-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics