Skip to main content

Structure and Transport Properties of Polymer Electrolyte Membranes Probed at Microscopic Scales

  • Chapter
  • First Online:
Alternative Energies

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 34))

Abstract

The synthesis and manufacturing of polymer electrolyte membranes with improved functional properties such as high proton conductivity and chemical stability is an actual challenge to increase the performances of Proton Exchange Membrane Fuel Cells. To achieve this goal, a microscopic understanding of the relation between the primary chemical nature of the electrolyte, the morphology, the proton transfer and water diffusion mechanisms, and the effective properties is essential. Multi-scale experimental strategies need to be developed for studying the structure/transport interplay in these complex charged polymers. In this chapter we focus on complementary spectroscopic techniques that operate at molecular, nanoscopic or mesoscopic scales. Both structural and dynamical characterizations of two representative polymer electrolytes are detailed: the benchmark perfluorinated Nafion membrane and an alternative polyaromatic material, the Sulfonated Polyimide. A review of state-of-the art numerical simulations is also provided to complement the experimental findings. The first section is dedicated to small angle scattering studies of polymer microstructure. The second section is devoted to the water and proton dynamics studied by quasi-elastic neutron scattering and NMR relaxometry. Finally the last section is dedicated to model self-assembled surfactant systems where the effect of confinement on proton mobility is explored in a systematic way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuel Cells I. In: Scherer G.G. (ed.) Advances in Polymer Science, vol. 215. Springer, Berlin (2008)

    Google Scholar 

  2. Yang, Y., Holdcroft, S.: Synthetic strategies for controlling the morphology of proton conducting polymer membranes. Fuel Cells 5(2), 171–186 (2005)

    Google Scholar 

  3. Jones DJ, Rozières J: Advances in the development of inorganic-organic membranes for fuel cell application. In: Scherer, G.G. (ed.) Advances in Polymer Science, Fuel Cell I, pp. 219. Springer, Berlin (2008)

    Google Scholar 

  4. Peckham, T.J., Holdcroft, S.: Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv. Mater. 22(42), 4667–4690 (2010)

    Google Scholar 

  5. Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M.: Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 35(17), 9349–9384 (2010)

    Google Scholar 

  6. Mauritz, K.A., Moore, R.B.: State of understanding of Nafion. Chem. Rev. 104, 4535–4585 (2004)

    Google Scholar 

  7. Byun, H.S., Burford, R.P., Fane, A.G.: Sulfonation of cross-linked asymmetric membranes based on polystyrene and divinylbenzene. J. Appl. Polym. Sci. 52(6), 825–835 (1994)

    Google Scholar 

  8. Zschocke, P., Quellmalz, D.: Novel ion-exchange membranes based on an aromatic polyethersulfone. J. Membr. Sci. 22(2–3), 325–332 (1985)

    Google Scholar 

  9. Alberti, G., et al.: Polymeric proton conducting membranes for medium temperature fuel cells (110–160 degrees C). J. Membr. Sci. 185(1), 73–81 (2001)

    MathSciNet  Google Scholar 

  10. Genies, C., et al.: Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 42(2), 359–373 (2001)

    Google Scholar 

  11. Marestin C, et al.: Sulfonated polyimides. In: Scherer, G.G. (ed.) Advances in polymer Science, Fuel Cells II, pp. 185. Springer, Berlin (2008)

    Google Scholar 

  12. de Araujo, C.C., et al.: Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features. Phys. Chem. Chem. Phys. 11(17), 3305–3312 (2009)

    Google Scholar 

  13. Schuster, M., et al.: Highly sulfonated poly(phenylene sulfone): preparation and stability issues. Macromolecules 42(8), 3129–3137 (2009)

    MathSciNet  Google Scholar 

  14. Wycisk, R., Pintauro, P.N.: Polyphosphazene membranes for fuel cells. Fuel Cells II 216, 157–183 (2008)

    Google Scholar 

  15. Maier, G., Meier-Haack, J.: Sulfonated aromatic polymers for fuel cell membranes. In: Scherer, G.G. (ed.) Advances in Polymer Science, Fuel Cells II, pp. 1–62. Springer, Berlin (2008)

    Google Scholar 

  16. Smitha, B., Sridhar, S., Khan, A.A.: Solid polymer electrolyte membranes for fuel cell applications—a review. J. Membr. Sci. 259(1–2), 10–26 (2005)

    Google Scholar 

  17. Savadogo, O.: Emerging membranes for electrochemical systems—Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J. Power Sources 127(1–2), 135–161 (2004)

    Google Scholar 

  18. Hickner, M.A., et al.: Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104(10), 4587–4611 (2004)

    Google Scholar 

  19. Hickner, M.A., Pivovar, B.S.: The chemical and structural nature of proton exchange membrane fuel cell properties. Fuel Cells 5(2), 213–229 (2005)

    Google Scholar 

  20. Rieberer, S., Norian, K.H.: Analytical electron-microscopy of Nafion ion-exchange membranes. Ultramicroscopy 41(1–3), 225–233 (1992)

    Google Scholar 

  21. Lehmani, A., Durand-Vidal, S., Turq, P.: Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope. J. Appl. Polym. Sci. 68(3), 503–508 (1998)

    Google Scholar 

  22. Aleksandrova, E., et al.: Electrochemical atomic force microscopy study of proton conductivity in a Nafion membrane. Phys. Chem. Chem. Phys. 9(21), 2735–2743 (2007)

    Google Scholar 

  23. Gebel, G., Diat, O.: Neutron and x-ray scattering: Suitable tools for studying ionomer membranes. Fuel Cells 5(2), 261–276 (2005)

    Google Scholar 

  24. Gierke, T.D., Munn, G.E., Wilson, F.C.: The morphology in Nafion perfluorinated membrane products, as determined by wide-and small-angle x-ray studies. J. Poly. Sci. 19, 1687–1704 (1981)

    Google Scholar 

  25. Halim, J., et al.: Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle x-ray-scattering. Electrochim. Acta 39(8–9), 1303–1307 (1994)

    Google Scholar 

  26. Haubold, H.G., et al.: Nano structure of Nafion: a SAXS study. Electrochim. Acta 46(10–11), 1559–1563 (2001)

    Google Scholar 

  27. Gebel, G., Lambard, J.: Small-angle scattering study of water-swollen perfluorinated ionomer membranes. Macromolecules 30(25), 7914–7920 (1997)

    Google Scholar 

  28. Gebel, G., Moore, R.B.: Small-angle scattering study of short pendant chain perfuorosulfonated ionomer membranes. Macromolecules 33(13), 4850–4855 (2000)

    Google Scholar 

  29. Rollet, A.-L., et al.: A SANS determination of the influence of external conditions on the nanostructure of Nafion membrane. J. Polym. Sci., Part B: Polym. Phys. 39, 548–558 (2001)

    Google Scholar 

  30. Rollet, A.-L., Diat, O., Gebel, G.: A new insight into Nafion structure. J. Phys. Chem B 106(12), 3033–3036 (2002)

    Google Scholar 

  31. Rubatat, L., Gebel, G., Diat, O.: Fibrillar structure of Nafion: Matching fourier and real space studies of corresponding films and solutions. Macromolecules 37(20), 7772–7783 (2004)

    Google Scholar 

  32. Rubatat, L., et al.: Evidence of elongated polymeric aggregates in Nafion. Macromolecules 35, 4050–4055 (2002)

    Google Scholar 

  33. Tovbin, Y.K., Dyakov, Y.A., Vasyutkin, N.F.: Study of water molecule diffusion in naphione membranes by the molecular-dynamics technique. Zh. Fiz. Khim. 67(10), 2122–2125 (1993)

    Google Scholar 

  34. Litt, M.H.: A reevaluation of Nafion morphology. Abstr. Pap. Am. Chem. Soc. 213(2), 33 (1997)

    Google Scholar 

  35. Kreuer, K.D.: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Memb. Sci. 185, 29–39 (2001)

    Google Scholar 

  36. Schmidt-Rohr, K., Chen, Q.: Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7(1), 75–83 (2008)

    Google Scholar 

  37. Blachot, J.-F., et al.: Anisotropy of structure and transport properties in sulfonated polyimide membranes. J. Memb. Sci. 214, 31–42 (2003)

    Google Scholar 

  38. Elliott, J.A., Paddison, S.J.: Modelling of morphology and proton transport in PFSA membranes. Phys. Chem. Chem. Phys. 9(21), 2602–2618 (2007)

    Google Scholar 

  39. Paddison, S.J., Elliott, J.A.: On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes. Phys. Chem. Chem. Phys. 8(18), 2193–2203 (2006)

    Google Scholar 

  40. Zhou, X.Y., et al.: Atomistic simulation of conduction and diffusion processes in Nafion polymer electrolyte and experimental validation. J. Electrochem. Soc. 154(1), B82–B87 (2007)

    Google Scholar 

  41. Idupulapati, N., Devanathan, R., Dupuis, M.: Ab initio study of hydration and proton dissociation in ionomer membranes. J. Phys. Chem. A 114(25), 6904–6912 (2010)

    Google Scholar 

  42. Urata, S., Irisawa, J., Takada, A.: Molecular dynamics simulation of swollen membrane of perfluorinated ionomer. J. Phys. Chem. B 109, 4269–4278 (2005)

    Google Scholar 

  43. Devanathan, R., Venkatnathan, A., Dupuis, M.: Atomistic simulation of Nafion membrane: I. Effect of hydration on membrane nanostructure. J Phys Chem B 111(28), 8069–8079 (2007)

    Google Scholar 

  44. Cui, S.T., et al.: Comparison of the hydration and diffusion of protons in perfluorosulfonic acid membranes with molecular dynamics simulations. J Phys Chem B 112(42), 13273–13284 (2008)

    Google Scholar 

  45. Liu, J.W., et al.: On the relationship between polymer electrolyte structure and hydrated morphology of perfluorosulfonic acid membranes. J. Phys. Chem. C 114(25), 11279–11292 (2010)

    Google Scholar 

  46. Brandell, D., et al.: Molecular dynamics studies of the Nafion (R), Dow (R) and Aciplex (R) fuel-cell polymer membrane systems. J. Mol. Model. 13(10), 1039–1046 (2007)

    Google Scholar 

  47. Wu, D.S., et al.: Mesoscale modelling of hydrated morphologies of 3 M perfluorosulfonic acid-based fuel cell electrolytes. Langmuir 26(17), 14308–14315 (2010)

    Google Scholar 

  48. Wescott, J.T., et al.: Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. J Chem Phys 124(13), 14 (2006)

    Google Scholar 

  49. Malek, K. et al.: Nanophase segregation and water dynamics in hydrated Nafion: molecular modeling and experimental validation. J. Chem. Phys. 129(20) (2008)

    Google Scholar 

  50. Knox, C.K., Voth, G.A.: Probing selected morphological models of hydrated nation using large-scale molecular dynamics simulations. J. Phys. Chem. B 114(9), 3205–3218 (2010)

    Google Scholar 

  51. Khalatur, P.G., Talitskikh, S.K., Khokhlov, A.R.: Structural organization of water-containing Nafion: the integral equation theory. Macromol. Theory Simul. 11(5), 566–586 (2002)

    Google Scholar 

  52. Hsu, W.Y., Gierke, T.D.: Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15(1), 101–105 (1982)

    Google Scholar 

  53. Galperin, D.Y., Khokhlov, A.R.: Mesoscopic morphology of proton-conducting polyelectrolyte membranes of Nafion((R)) type: a self-consistent mean field simulation. Macromol. Theory Simul. 15(2), 137–146 (2006)

    Google Scholar 

  54. Yamamoto, S., Hyodo, S.A.: A computer simulation study of the mesoscopic structure of the polyelectrolyte membrane Nafion. Polym. J. 35(6), 519–527 (2003)

    Google Scholar 

  55. Vishnyakov, A.: Final report for US Army Research Office, DAAD190110545, Editor. (2005)

    Google Scholar 

  56. Wu, D.S., Paddison, S.J., Elliott, J.A.: A comparative study of the hydrated morphologies of perfluorosulfonic acid fuel cell membranes with mesoscopic simulations. Energy Environ. Sci. 1(2), 284–293 (2008)

    Google Scholar 

  57. Wu, D.S., Paddison, S.J., Elliott, J.A.: Effect of molecular weight on hydrated morphologies of the short-side-chain perfluorosulfonic acid membrane. Macromolecules 42(9), 3358–3367 (2009)

    Google Scholar 

  58. Takimoto, N., et al.: Hydration behaviour of perfluorinated and hydrocarbon-type proton exchange membranes: relationship between morphology and proton conduction. Polymer 50(2), 534–540 (2009)

    Google Scholar 

  59. Kreuer, K.D., et al.: Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004)

    Google Scholar 

  60. Eikerling, M., Kornyshev, A.A., Kucernak, A.R.: Water in polymer electrolyte fuel cells: Friend or foe? Phys. Today 59(10), 38–44 (2006)

    Google Scholar 

  61. Saito, M., et al.: Mechanisms of ion and water transport in perfluorosulfonated ionomer membranes for fuel cells. J Phys Chem B 108(41), 16064–16070 (2004)

    Google Scholar 

  62. Majsztrik, P.W., et al.: Water sorption, desorption and transport in Nafion membranes. J. Membr. Sci. 301(1–2), 93–106 (2007)

    Google Scholar 

  63. Bass, M., et al.: Surface structure of Nafion in vapor and liquid. J. Phys. Chem. B 114(11), 3784–3790 (2010)

    Google Scholar 

  64. Gebel, G. et al.: The kinetics of water sorption in Nafion membranes: a small-angle neutron scattering study. J. Phys.-Condens. Matter 23(23) (2011)

    Google Scholar 

  65. Kusoglu, A., et al.: Subsecond morphological changes in Nafion during water uptake detected by small-angle x-ray scattering. Acs Macro Lett. 1(1), 33–36 (2012)

    Google Scholar 

  66. Lyonnard, S.: Unpublished data

    Google Scholar 

  67. Elliott, J.A., et al.: Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes. Phys. Chem. Chem. Phys. 1, 4855–4863 (1999)

    Google Scholar 

  68. Moilanen, D.E., Piletic, I.R., Fayer, M.D.: Tracking water’s response to structural changes in Nafion membranes. J. Phys. Chem. A 110(29), 9084–9088 (2006)

    Google Scholar 

  69. Moilanen, D.E., Piletic, I.R., Fayer, M.D.: Water dynamics in Nafion fuel cell membranes: The effects of confinement and structural changes on the hydrogen bond network. J. Phys. Chem. C 111(25), 8884–8891 (2007)

    Google Scholar 

  70. Moilanen, D.E., et al.: Confinement or the nature of the interface? Dynamics of nanoscopic water. J. Am. Chem. Soc. 129(46), 14311–14318 (2007)

    Google Scholar 

  71. Spry, D.B., et al.: Proton transport and the water environment in Nafion fuel cell membranes and AOT reverse micelles. J. Am. Chem. Soc. 129(26), 8122–8130 (2007)

    Google Scholar 

  72. Moilanen, D.E., Spry, D.B., Fayer, M.D.: Water dynamics and proton transfer in Nafion fuel cell membranes. Langmuir 24(8), 3690–3698 (2008)

    Google Scholar 

  73. Lu, Z.J., et al.: State of water in perfluorosulfonic ionomer (Nafion 117) proton exchange membranes. J. Electrochem. Soc. 155(2), B163–B171 (2008)

    Google Scholar 

  74. Kalapos, T.L., et al.: Thermal studies of the state of water in proton conducting fuel cell membranes. J. Power Sources 172(1), 14–19 (2007)

    Google Scholar 

  75. Duplessix, R. et al.: Water absorption in acid Nafion membranes. Water in polymers (1980)

    Google Scholar 

  76. Falk, M.: An infrared study of water in perfluorosulfonate (Nafion) membranes. Can. J. Chem. 58, 1495–1501 (1980)

    Google Scholar 

  77. Laporta, M., Pegoraro, M., Zanderighi, L.: Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity. Phys. Chem. Chem. Phys. 1, 4619–4628 (1999)

    Google Scholar 

  78. Gruger, A., et al.: Nanostructure of Nafion membranes at different states of hydration. An IR and Raman study. Vib. Spectrosc. 26, 215–225 (2001)

    Google Scholar 

  79. Iwamoto, R., et al.: Water in perfluorinated sulfonic acid Nafion membranes. J. Phys. Chem. B 106(28), 6973–6978 (2002)

    Google Scholar 

  80. Ferrari, M.C., et al.: FTIR-ATR study of water distribution in a short-side-chain PFSI membrane. Macromolecules 45(4), 1901–1912 (2012)

    Google Scholar 

  81. Paddison, S.J., Paul, R.: The nature of proton transport in fully hydrated Nafion (R). Phys. Chem. Chem. Phys. 4(7), 1158–1163 (2002)

    Google Scholar 

  82. Eikerling, M., et al.: Mechanisms of proton conductance in polymer electrolyte membranes. J. Phys. Chem. B 105(17), 3646–3662 (2001)

    Google Scholar 

  83. Eikerling, M., Kornyshev, A.A.: Proton transfer in a single pore of a polymer electrolyte membrane. J. Electroanal. Chem. 502(1–2), 1–14 (2001)

    Google Scholar 

  84. Choi, P., Jalani, N.H., Datta, R.: Thermodynamics and proton transport in Nafion—II. Proton diffusion mechanisms and conductivity. J. Electrochem. Soc. 152(3), E123–E130 (2005)

    Google Scholar 

  85. Spohr, E.: Molecular dynamics simulations of proton transfer in a model Nafion pore. Mol. Simul. 30(2–3), 107–115 (2004)

    Google Scholar 

  86. Petersen, M.K., et al.: Excess proton solvation and delocalization in a hydrophilic pocket of the proton conducting polymer membrane narion. J. Phys. Chem. B 109(9), 3727–3730 (2005)

    Google Scholar 

  87. Petersen, M.K., Voth, G.A.: Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane Nafion. J. Phys. Chem. B 110(37), 18594–18600 (2006)

    Google Scholar 

  88. Spohr, E., Commer, P., Kornyshev, A.A.: Enhancing proton mobility in polymer electrolyte membranes: Lessons from molecular dynamics simulations. J. Phys. Chem. B 106(41), 10560–10569 (2002)

    Google Scholar 

  89. Eikerling, M., Kornyshev, A.A., Spohr, E.: Proton-conducting polymer electrolyte membranes: water and structure in charge. In: Scherer, G.G. (ed.) Advances in Polymer Science, Fuel Cells I, pp. 15–54. Springer, Berlin (2008)

    Google Scholar 

  90. Kornyshev, A.A., et al.: Kinetics of proton transport in water. J. Phys. Chem. B 107(15), 3351–3366 (2003)

    Google Scholar 

  91. Dokmaisrijan, S., Spohr, E.: MD simulations of proton transport along a model Nafion surface decorated with sulfonate groups. J. Mol. Liq. 129(1–2), 92–100 (2006)

    Google Scholar 

  92. Paddison, S.J., Elliott, J.A.: Molecular modelling of the short-side-chain perfluorosulfonic acid membrane. J. Phys. Chem. A 109(33), 7583–7593 (2005)

    Google Scholar 

  93. Paddison, S.J., Elliott, J.A.: The effects of backbone conformation on hydration and proton transfer in the ‘short-side-chain’ perfluorosulfonic acid membrane. Solid State Ionics 177(26–32), 2385–2390 (2006)

    Google Scholar 

  94. Paddison, S.J., Elliott, J.A.: Selective hydration of the ‘short-side-chain’ perfluorosulfonic acid membrane. An ONIOM study. Solid State Ionics 178(7–10), 561–567 (2007)

    Google Scholar 

  95. Devanathan, R., Venkatnathan, A., Dupuis, M.: Atomistic simulation of Nafion membrane. 2. Dynamics of water molecules and hydronium ions. J. Phys. Chem. B 111(45), 13006–13013 (2007)

    Google Scholar 

  96. Devanathan, R., et al.: Atomistic simulation of water percolation and proton hopping in nation fuel cell membrane. J. Phys. Chem. B 114(43), 13681–13690 (2010)

    Google Scholar 

  97. Bée, M.: Quasielastic neutron scattering. Adam Hilger, Bristol and Philadelphia (1988)

    Google Scholar 

  98. Bellissent-Funel, M.C.: Status of experiments probing the dynamics of water in confinement. Eur. Phys. J. E 12(1), 83–92 (2003)

    Google Scholar 

  99. Proceedings of the International Conference on Neutron Scattering. In: Physica B. (1998)

    Google Scholar 

  100. Dianoux, A.J., Pineri, M., Volino, F.: Neutron incoherent scattering law for restricted diffusion inside a volume with an anisotropic shape—Application to the problem of water in Nafion membranes. Mol. Phys. 46(1), 129–137 (1982)

    Google Scholar 

  101. Volino, F., et al.: Water mobility in a water-soaked Nafion membrane: A high-resolution neutron quasielastic study. J. Polym. Sci. 20(3), 481–496 (1982)

    Google Scholar 

  102. Pivovar, A.M., Pivovar, B.S.: Dynamics behaviour of water within a polymer electrolyte fuel cell membrane at low hydration levels. J. Phys. Chem. B 109, 785–793 (2005)

    Google Scholar 

  103. Paciaroni, A.: Temperature-dependent dynamics of water confined in nafion membranes. J. Phys. Chem. B 110(28), 13769–13776 (2006)

    Google Scholar 

  104. Perrin, J.C., Lyonnard, S., Volino, F.: Quasielastic neutron scattering study of water dynamics in hydrated nafion membranes. J. Phys. Chem. C 111(8), 3393–3404 (2007)

    Google Scholar 

  105. Volino, F., Perrin, J.C., Lyonnard, S.: Gaussian model for localized translational motion: Application to incoherent neutron scattering. J. Phys. Chem. B 110(23), 11217–11223 (2006)

    Google Scholar 

  106. Lyonnard, S., Gebel, G.: Neutrons for fuel cell membranes: structure, sorption and transport properties. Eur. Phys. J. Special Topics 213, 195–211 (2012)

    Google Scholar 

  107. Jamróz, D., Maréchal, Y.: Hydration of sulfonated polyimide membranes. II. water uptake and hydration mechanisms of protonated homopolymer and block copolymers. J. Phys. Chem. B 109, 19664–19675 (2005)

    Google Scholar 

  108. Tuckerman, M., et al.: Ab-initio molecular-dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103(1), 150–161 (1995)

    MathSciNet  Google Scholar 

  109. Noack, F.: NMR field-cycling spectroscopy: principles and applications. Progr. NMR Spectrosc. 18, 171–276 (1986)

    Google Scholar 

  110. Kimmich, R.: NMR tomography diffusometry relaxometry, p. 526. Springer, Berlin (1997)

    Google Scholar 

  111. Levitz, P., Korb, J.-P., Petit, D.: Slow dynamics of embedded fluid in mesoscopic confining systems as probed by NMR relaxometry. Eur. Phys. J. E 12, 29–33 (2003)

    Google Scholar 

  112. Levitz, P.E.: Slow dynamics in colloidal glasses and porous media as probed by NMR relaxometry: assessment of solvent Levy statistics in the strong adsorption regime. Magn. Res. Imag. 21, 177–184 (2003)

    Google Scholar 

  113. Perrin, J.C., et al.: Water dynamics in lonomer membranes by field-cycling NMR relaxometry. Fuel Cells 6(1), 5–9 (2006)

    Google Scholar 

  114. Perrin, J.C., et al.: Water dynamics in ionomer membranes by field-cycling NMR relaxometry. J. Phys. Chem. B 110(11), 5439–5444 (2006)

    Google Scholar 

  115. Perrin, J.C., et al.: Water dynamics in ionomer membranes by field-cycling NMR relaxometry. Magn. Reson. Imaging 25(4), 501–504 (2007)

    Google Scholar 

  116. Korb, J.-P., Xu, S., Jonas, J.: Confinement effects on dipolar relaxation by translational dynamics of liquids in porous silica glasses. J. Chem. Phys. 98(3), 2411–2422 (1993)

    Google Scholar 

  117. Lyonnard S. et al.: Perfluorinated surfactants as model charged systems for understanding the effect of confinement on proton transport and water mobility in fuel cell membranes. A study by QENS. Eur. Phys. J.-Spec. Topics 189(1), 205–216 (2010)

    Google Scholar 

  118. Cornet, N., Beaudoing, G., Gebel, G.: Influence of the structure of sulfonated polyimide membranes on transport properties. Sep. Purif. Technol. 22–23, 681–687 (2001)

    Google Scholar 

  119. Diat, O. et al.: Anisotropie structurale et des propriétés de transport dans les membranes en polyimide sulfoné. J. Phys. IV France 12, 2–63—2–71 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Lyonnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lyonnard, S. (2013). Structure and Transport Properties of Polymer Electrolyte Membranes Probed at Microscopic Scales. In: Ferreira, G. (eds) Alternative Energies. Advanced Structured Materials, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40680-5_8

Download citation

Publish with us

Policies and ethics