Skip to main content

Effect of Transitional Turbulence Modelling on a Straight Blade Vertical Axis Wind Turbine

  • Chapter
  • First Online:
Alternative Energies

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 34))

Abstract

The flow around straight blade vertical axis wind turbines is typically complex at low tip speed ratios (TSR < 2). In this paper, the turbulence models which are based on the assumption of fully developed turbulent flow, such as S-A, RNG κ-ε and SST κ-ω have been investigated in comparison to the SST transitional model (both with and without curvature correction) to account for the laminar-turbulence transition. The investigation is based on the 2D unsteady Reynolds averaged Navier–Stokes (URANS) equations using a sliding mesh technique. It has been found that applying turbulence models based on the assumption of fully developed flow shows significant differences in velocity magnitude if the flow is under stall condition or wake effect compared to the transitional model. Also, the predicted flow structure in the vicinity of the stalled airfoils using different types of turbulence models is found to be different compared to the un-stalled airfoils where no significant differences in the flow field have been observed. In the wake region, the flow varies less significantly compared to the stalled airfoils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39, 1529–1541 (2010)

    Article  MATH  Google Scholar 

  2. Paraschivoiu, I.: Wind Turbine Design: With Emphasis on Darrieus Concept. Polytechnic International Press, Canada (2002)

    Google Scholar 

  3. Sharpe, D.: A theoretical and experimental study of the Darrieus vertical axis wind turbine. Polytechnic School of Mechanical, Aeronautical and Production Engineering (1977)

    Google Scholar 

  4. Holme, O.: A contribution to the aerodynamic theory of the vertical-axis wind turbine. In: International Symposium on Wind Energy Systems, Cambridge, England, pp. C4-55–C4-71 (1976)

    Google Scholar 

  5. Strickland, J.: A performance prediction model for the Darrieus turbine. In: International Symposium on Wind Energy Systems, Cambridge, UK, pp. C3-39–C3-54 (1976)

    Google Scholar 

  6. Bergey, K.: The lanchester-betz limit. J. Energy 3, 382–384 (1979)

    Article  Google Scholar 

  7. Mathew, S.: Wind Energy: Fundamentals, Resource Analysis and Economics. Springer, Berlin (2006)

    Book  Google Scholar 

  8. Lv, Y.Z., Jiang, D.X., Jiang, Y.: Numerical simulation on small scale straight-blade and twisted-blade vertical axis wind turbine. Adv. Mater. Res. 455, 334–338 (2012)

    Google Scholar 

  9. Anderson, J., Wendt, J.: Computational Fluid Dynamics. McGraw-Hill, New York (1995)

    Google Scholar 

  10. Versteeg, H., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Prentice Hall, NJ (2007)

    Google Scholar 

  11. Tu, J., Yeoh, G.H., Liu, C.: Computational Fluid Dynamics: A Practical Approach, 1st edn. Butterworth-Heinemann, Burlington (2008)

    Google Scholar 

  12. Islam, M., Amin, M., Carriveau, R., Fartaj, A.: Investigation of low reynolds number airfoils for fixed-pitch straight-bladed VAWT, pp. 5–8

    Google Scholar 

  13. Islam, M., Ting, D., Fartaj, A.: Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew. Sustain. Energy Rev. 12, 1087–1109 (2008)

    Article  Google Scholar 

  14. Hinze, J.: Turbulence, vol. 13, pp. 741–773. McGraw Hill Book Company, NY (1975)

    Google Scholar 

  15. Launder, B., Spalding, D.: Lectures in Mathematical Models of Turbulence. Academic Press, NY (1979)

    Google Scholar 

  16. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La recherche aérospatiale 1, 5–21 (1994)

    Google Scholar 

  17. Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4, 1510 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  19. Reynolds, O.: On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. 186, 123–161 (1895)

    Google Scholar 

  20. Jackson, D., Launder, B.: Osborne Reynolds and the publication of his papers on turbulent flow. Fluid Mech. 39, 19–35 (2007)

    Article  MathSciNet  Google Scholar 

  21. Papageorgakis, G., Assanis, D.N.: Comparison of linear and nonlinear RNG-based k-epsilon models for incompressible turbulent flows. Numer. Heat Transf. Part B Fundam. 35, 1–22 (1999)

    Article  Google Scholar 

  22. Baldwin, B., Lomax, H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper, U.S., pp. 78–257 (1978)

    Google Scholar 

  23. Kato, M., Launder, B.: Three-dimensional modelling and heat-loss effects on turbulent flow in a nominally two-dimensional cavity. Int. J. Heat Fluid Flow 16, 171–177 (1993)

    Google Scholar 

  24. Ince, N., Launder, B.: Three-dimensional and heat-loss effects on turbulent flow in a nominally two-dimensional cavity. Int. J. Heat Fluid Flow 16, 171–177 (1995)

    Article  Google Scholar 

  25. Wilcox, D.: Turbulence Modeling for CFD. DCW Industries, Inc., CA (1993)

    Google Scholar 

  26. Menter, F., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 4, 2003 (2003)

    Google Scholar 

  27. Menter, F.R.: Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 23, 305–316 (2009)

    Article  MATH  Google Scholar 

  28. Langtry, R., Menter, F., Likki, S., Suzen, Y., Huang, P., Völker, S.: A correlation-based transition model using local variables—Part II: Test cases and industrial applications. J. Turbomach. 128, 423 (2006)

    Article  Google Scholar 

  29. Menter, F., Langtry, R., Likki, S., Suzen, Y., Huang, P., Völker, S.: A correlation-based transition model using local variables—Part I: Model formulation. J. Turbomach. 128, 413 (2006)

    Article  Google Scholar 

  30. Wang, S., Ma, L., Ingham, D.B., Pourkashanian, M., Tao, Z.: Turbulence modelling of deep dynamic stall at low Reynolds number. Lect. Notes Eng. Comput. Sci. 2, 184 (2010)

    Article  Google Scholar 

  31. Genç, M.S., Karasu, I., Açıkel, H.H., Akpolat, M.T.: An experimental study on aerodynamics of NACA2415 aerofoil at low Re numbers. Exp. Thermal Fluid Sci. 39, 252–264 (2012)

    Google Scholar 

  32. White, F.M.: Viscous Fluid Flow, vol. 2. McGraw-Hill, New York (1991)

    Google Scholar 

  33. Cebeci, T., Mosinskis, G.J., Smith, A.M.O.: Calculation of separation points in incompressible turbulent flows. J. Aircraft 9, 618–624 (1972)

    Article  Google Scholar 

  34. Drela, M., Giles, M.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25, 1347–1355 (1987)

    Article  MATH  Google Scholar 

  35. Lian, Y., Shyy, W.: Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoii. AIAA J. 45, 1501–1513 (2007)

    Article  Google Scholar 

  36. Walters, D.K., Leylek, J.H.: Computational fluid dynamics study of wake-induced transition on a compressor-like flat plate. J. Turbomach. 127, 52–63 (2005)

    Article  Google Scholar 

  37. Cutrone, L., De Palma, P., Pascazio, G., Napolitano, M.: Predicting transition in two-and three-dimensional separated flows. Int. J. Heat Fluid Flow 29, 504–526 (2008)

    Article  Google Scholar 

  38. Nakamori, I., Ikohagi, T.: Dynamic hybridization of MILES and RANS for predicting airfoil stall. Comput. Fluids 37, 161–169 (2008)

    Article  MATH  Google Scholar 

  39. Abu-Ghannam, B., Shaw, R.: Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history. J. Mech. Eng. Sci. 22, 213–228 (1980)

    Article  Google Scholar 

  40. Sørensen, N.N.: CFD modelling of laminar-turbulent transition for airfoils and rotors using the γ-model. Wind Energy 12, 715–733 (2009)

    Article  Google Scholar 

  41. Durbin, P.: Near-wall turbulence closure modelling without “damping functions”. Theoret. Comput. Fluid Dyn. 3, 1–13 (1991)

    MATH  Google Scholar 

  42. Benini, E., Ponza, R.: Laminar to turbulent boundary layer transition investigation on a supercritical airfoil using the γ − θ transitional model. In: 40th Fluid Dynamics Conference and Exhibit, Chicago, Illinois, p. 4289 (2010)

    Google Scholar 

  43. Castelli, M.R., Garbo, F., Benini, E.: Numerical investigation of laminar to turbulent boundary layer transition on a Naca 0012 airfoil for vertical-axis wind turbine applications. Wind Eng. 35, 661–686 (2011)

    Article  Google Scholar 

  44. Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Turbulence modelling of deep dynamic stall at relatively low Reynolds number. J. Fluids Struct. 33, 191–209 (2012)

    Article  Google Scholar 

  45. Almohammadi, K.M., Ingham, D.B., Ma, L., Pourkashanian, M.: CFD sensitivity analysis of a straight-blade vertical axis wind turbine. Wind Eng. 5, 571 (2012)

    Article  Google Scholar 

  46. Kooiman, S., Tullis, S.: Response of a vertical axis wind turbine to time varying wind conditions found within the urban environment. Wind Eng. 34, 389–401 (2010)

    Google Scholar 

  47. Bravo, R., Tullis, S., Ziada, S.: Performance testing of a small vertical-axis wind turbine. In: 21st Canadian Congress of Applied Mechanics, Toronto, Ontario, Canada (2007)

    Google Scholar 

  48. McLaren, K.W.: A numerical and experimental study of unsteady loading of high solidity vertical axis wind turbines. Phd, Mechanical Engineering, McMaster University, McMaster (2011)

    Google Scholar 

  49. Almohammadi, K.M., Ingham, D., Ma, L., Pourkashanian, M.: CFD modelling investigation of a straight-blade vertical axis wind turbine. In: Presented at the 13th International Conference on Wind Engineering, Amsterdam, Netherland (2011)

    Google Scholar 

  50. Ferreira, C.S., Bijl, H., van Bussel, G., van Kuik, G.: Simulating dynamic stall in a 2D VAWT: Modeling strategy, verification and validation with particle image velocimetry data. J. Phys: Conf. Ser. p. 012023 (2007)

    Google Scholar 

  51. Camporeale, S.M., Magi, V.: Streamtube model for analysis of vertical axis variable pitch turbine for marine currents energy conversion. Energy Convers. Manage. 41, 1811–1827 (2000)

    Article  Google Scholar 

  52. McLaren, K., Tullis, S., Ziada, S.: Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine. Wind Energy 15, 349–361 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Khaled M. Almohammadi would like to express his gratitude to Taibah University, Kingdom of Saudi Arabia for supporting him to perform his PhD study in the University of Leeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Almohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Almohammadi, K.M., Ingham, D.B., Ma, L., Pourkashanian, M. (2013). Effect of Transitional Turbulence Modelling on a Straight Blade Vertical Axis Wind Turbine. In: Ferreira, G. (eds) Alternative Energies. Advanced Structured Materials, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40680-5_5

Download citation

Publish with us

Policies and ethics