Skip to main content

Environmental Performance of Applying Alternative Energies to the Collection, Transport and MBT Plant Within an Integrated MSW Management System

  • Chapter
  • First Online:
Alternative Energies

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 34))

Abstract

This study extends the environmental assessment of Municipal Solid Waste (MSW) management strategies using Life Cycle Assessment (LCA) methodology with the objective of evaluating the environmental implications of applying alternative energies to the collection, transport and operation of a Mechanical–Biological Treatment (MBT) plant within an integrated MSW management system. To this end, the environmental implications of the use of alternative energies in two stages of the MSW management system were taken into account: (1) collection and transportation systems for the residual household waste of MSW; and (2) the MBT plant operation including the recovery of its residual fraction. As a case study, the MSW management system of the Ecocity Valdespartera and the MBT plant in Zaragoza have been evaluated. These sites are located in the Autonomous Community of Aragon (Spain). In this study, different scenarios of alternative energy supply from renewable energy sources were evaluated at each stage of the management system. Impact assessment for each of the scenarios considered the following six impact categories: (1) acidification (kg SO2 eq.); (2) global warming (100 years) (kg CO2 eq.); (3) eutrophication (kg PO4 eq.); (4) photochemical oxidation (kg C2H4 eq.); (5) abiotic depletion (kg Sb eq.); and (6) ozone layer depletion (kg CFC-11 eq.). These categories are contained in the CML 2 baseline 2,000 impact assessment method V2.05. The software Simapro V. 7.3.2 was also used. Results show that when alternative energy supply scenarios from renewable energy sources (RES) are included in both the collection system and the operation of the MBT, environmental benefits can be achieved in comparison to current state of affairs. In this scenario, the avoided emissions are greater than those generated in most of the impact categories under study. The results identify scientific and technical processes that can be used to promote fundamental changes in the management of upstream flows of MSW in MBT plants and in its operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Society of Environmental Toxicology and Chemistry: www.setac.org.

Abbreviations

Ea :

CO2-eq. emissions avoided, (t)

Eg :

CO2-eq. emissions generated, (t)

β :

Difference between generated and avoided CO2-eq. emissions, (t)

i:

MSW management system

j:

Scenario for MSW treatment and recovery methods

x:

Subsystem or activity within the MSW management system i

y:

MSW treatment and recovery method considered in scenario j

LCA:

Life Cycle Assessment

GWP:

Global Warming Potential

IMS:

Integrated Management System

IPCC:

Intergovernmental Panel on Climate Change

LCI:

Life Cycle Inventory

MBT:

Mechanical–Biological Treatment

MSW:

Municipal Solid Waste

RDF:

Refuse Derived Fuel

tCO2-eq:

Tonnes of CO2 equivalent

HHV:

Higher Heating Value

LHV:

Lower Heating Value

tkm:

Tonnes per kilometre

References

  1. Gobierno de Aragón (2009) Gestión Integral de los Residuos de Aragón (Integrated Waste Management Plan of Aragón). G.I.R.A. (2009–2015). In: Aragón, Gd. (ed.) ORDEN de 22 de Abril de 2009 del Consejero de Medio Ambiente, Spain (Decree of April 22, 2009 the Minister of the Environment, Spain, 2009)

    Google Scholar 

  2. Kreith, F.: Handbook of solid waste management. McGraw-Hill, New York (1994)

    Google Scholar 

  3. Eurostat Data Centre on Waste. Municipal waste (env_wasmun). Available from http://epp.eurostat.ec.europa.eu/portal/page/portal/waste/data/database (2012)

  4. Tavares, G., Zsigraiova, Z., Semiao, V., Carvalho, M.G.: Optimisation of MSW collection routes for minimum fuel consumption using 3D GIS modelling. Waste Manage. (Oxford) 29, 1176–1185 (2009)

    Article  Google Scholar 

  5. United Nations Environment Programme. Assessment of Current Waste Management System and Gaps therein Developing Integrated Solid Waste Management Plan. Training Manual 2. Division of Technology, Industry and Economics. International Environmental Technology Centre, Osaka/Shiga, Japan (2009)

    Google Scholar 

  6. de Oliveira Simonetto, E., Borenstein, D.: A decision support system for the operational planning of solid waste collection. Waste Manage. 27, 1286–1297 (2007)

    Article  Google Scholar 

  7. Council of Europe. Management of municipal solid waste in Europe. Resolution 1543 Committee on the Environment Agriculture and Local and Regional Affairs (2007)

    Google Scholar 

  8. Eurostat. Environmental statistics and accounts in Europe. Luxembourg: Publications Office of the European Union (2010)

    Google Scholar 

  9. Eisted, R., Larsen, A.W., Christensen, T.H.: Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution. Waste Manage. Res. 27, 738–745 (2009)

    Article  Google Scholar 

  10. Feo, G.D., Malvano, C.: The use of LCA in selecting the best MSW management system. Waste Manage. (Oxford) 29, 1901–1915 (2009)

    Article  Google Scholar 

  11. Gallardo, A., Bovea, M.D., Colomer, F.J., Prades, M.: Analysis of collection systems for sorted household waste in Spain. Waste Manage. (Oxford) 32, 1623–1633 (2012)

    Article  Google Scholar 

  12. Gallardo, A., Bovea, M.D., Colomer, F.J., Prades, M., Carlos, M.: Comparison of different collection systems for sorted household waste in Spain. Waste Manage. (Oxford) 30, 2430–2439 (2010)

    Article  Google Scholar 

  13. Gómez, M., Sebastián, F., Royo, J.: Biodiesel versus natural gas fuelled engines to improve contribution of captative fleets to air quality. In: Proceedings of 16th European Biomass Conference and Exhibition BC&E. EU BC&E Conference, Valencia, Spain (2008)

    Google Scholar 

  14. Iriarte, A., Gabarrell, X., Rieradevall, J.: LCA of selective waste collection systems in dense urban areas. Waste Manage. (Oxford) 29, 903–914 (2009)

    Article  Google Scholar 

  15. Punkkinen, H., Merta, E., Teerioja, N., Moliis, K., Kuvaja, E.: Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system. Waste Manage. (Oxford) 32, 1775–1781 (2012)

    Article  Google Scholar 

  16. Teerioja, N., Moliis, K., Kuvaja, E., Ollikainen, M., Punkkinen, H., Merta, E.: Pneumatic vs. door-to-door waste collection systems in existing urban areas: a comparison of economic performance. Waste Manage. (Oxford) 32, 1782–1791 (2012)

    Article  Google Scholar 

  17. Wäger, P.A., Hischier, R., Eugster, M.: Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE): a follow-up. Sci. Total Environ. 409, 1746–1756 (2011)

    Article  Google Scholar 

  18. Bovea M.D., Ibáñez-Forés, V., Gallardo A., Colomer-Mendoza. FJ.: Environmental assessment of alternative municipal solid waste management strategies: a Spanish case study. Waste Manage. 30, 2383–2395 (2010)

    Google Scholar 

  19. Ecoembalajes España, S.A. (ECOEMBES). Recogida selectiva de Envases Ligeros (Selective collection of Light Packaging). http://www.ecoembes.com (2012)

  20. European Parliament C. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance). Official J. Eur. Union (OJ L 312), pp. 3–30 (2008)

    Google Scholar 

  21. Pires, A., Martinho, G., Chang, N.-B.: Solid waste management in European countries: a review of systems analysis techniques. J. Environ. Manage. 92, 1033–1050 (2011)

    Article  Google Scholar 

  22. Tintner, J., Smidt, E., Böhm, K., Binner, E.: Investigations of biological processes in Austrian MBT plants. Waste Manage. (Oxford) 30, 1903–1907 (2010)

    Article  Google Scholar 

  23. Lornage, R., Redon, E., Lagier, T., Hébé, I., Carré, J.: Performance of a low-cost MBT prior to landfilling: study of the biological treatment of size-reduced MSW without mechanical sorting. Waste Manage. (Oxford) 27, 1755–1764 (2007)

    Article  Google Scholar 

  24. Aranda Usón, A., Ferreira, G., Zambrana Vásquez, D., Zabalza Bribián, I., Llera Sastresa, E.: Estimation of the energy content of the residual fraction refused by MBT plants: a case study in Zaragoza’s MBT plant. J. Cleaner Prod. 20, 38–46 (2012)

    Article  Google Scholar 

  25. Montejo, C., Ramos, P., Costa, C., Márquez, M.C.: Analysis of the presence of improper materials in the composting process performed in ten MBT plants. Bioresour. Technol. 101, 8267–8272 (2010)

    Article  Google Scholar 

  26. Nithikul, J., Karthikeyan, O.P., Visvanathan, C.: Reject management from a Mechanical Biological Treatment plant in Bangkok, Thailand. Resour. Conserv. Recycl. 55, 417–422 (2011)

    Article  Google Scholar 

  27. Velis, C.A., Longhurst, P.J., Drew, G.H., Smith, R., Pollard, S.J.T.: Biodrying for mechanical-biological treatment of wastes: a review of process science and engineering. Bioresour. Technol. 100, 2747–2761 (2009)

    Article  Google Scholar 

  28. Montejo, C., Costa, C., Ramos, P., Márquez, MdC: Analysis and comparison of municipal solid waste and reject fraction as fuels for incineration plants. Appl. Therm. Eng. 31, 2135–2140 (2011)

    Article  Google Scholar 

  29. Abeliotis, K., Kalogeropoulos, A., Lasaridi, K.: Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag. 32, 213–219 (2012)

    Article  Google Scholar 

  30. Gentil, E.C., Damgaard, A., Hauschild, M., Finnveden, G., Eriksson, O., Thorneloe, S., et al.: Models for waste life cycle assessment: review of technical assumptions. Waste Manage. 30, 2636–2648 (2010)

    Article  Google Scholar 

  31. Mohareb, E.A., MacLean, H.L., Kennedy, C.A.: Greenhouse gas emissions from waste management–assessment of quantification methods. J. Air Waste Manag. Assoc. 61, 480–493 (2011)

    Article  Google Scholar 

  32. Papageorgiou, A., Barton, J.R., Karagiannidis, A.: Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England. J. Environ. Manage. 90, 2999–3012 (2009)

    Article  Google Scholar 

  33. Zhao, W., der Voet, Ev, Zhang, Y., Huppes, G.: Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: Case study of Tianjin. China. Sci. Total Environ. 407, 1517–1526 (2009)

    Article  Google Scholar 

  34. Aranda Usón, A., Ferreira, G., Zabalza Bribián, I., Zambrana Vásquez, D.: Study of the environmental performance of end-of-life tyre recycling through a simplified mathematical approach. Therm. Sci. (2012)

    Google Scholar 

  35. Tukker, A.: Life cycle assessment as a tool in environmental impact assessment. Environ. Impact Assess. Rev. 20, 435–456 (2000)

    Article  Google Scholar 

  36. Guinee, J., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A.: Life cycle assessment—an operational guide to the ISO standards. Centre of Environmental Sciences (CML), Leiden University (2001)

    Google Scholar 

  37. International Organization for Standardization: Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization, Geneva, Switzerland (2006). ISO 14040:2006

    Google Scholar 

  38. Guinée, J.B.: Handbook on life cycle assessment: operational guide to the ISO standards. Springer (2002)

    Google Scholar 

  39. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., et al.: Life cycle assessment: Part 1: framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30, 701–720 (2004)

    Article  Google Scholar 

  40. Banar, M., Cokaygil, Z., Ozkan, A.: Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manage. 29, 54–62 (2009)

    Article  Google Scholar 

  41. Bravo, Y., Carvalho, M., Serra, L.M., Monné, C., Alonso, S., Moreno, F., et al.: Environmental evaluation of dish-Stirling technology for power generation. Sol. Energ. 86, 2811–2825 (2012)

    Article  Google Scholar 

  42. Cleary, J.: Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature. Environ. Int. 35, 1256–1266 (2009)

    Article  Google Scholar 

  43. Aranda Usón, A., Ferreira, G., Zambrana Vásquez, D., Zabalza Bribián, I., Llera Sastresa, E.: Environmental-benefit analysis of two urban waste collection systems. Sci. Total Environ. pp. 72–77 (2013)

    Google Scholar 

  44. Taghizadeh, F., Safavian, T.: Network analysis based designing for a municipal solid waste collection and transportation system. J. Food Agric. Environ. 9, 758–762 (2011)

    Google Scholar 

  45. Fthenakis, V.M., Kim, H.C.: Photovoltaics: life-cycle analyses. Sol. Energy 85, 1609–1628 (2011)

    Article  Google Scholar 

  46. López, J.M., Gómez, Á., Aparicio, F.: Javier Sánchez F. Comparison of GHG emissions from diesel, biodiesel and natural gas refuse trucks of the City of Madrid. Appl. Energy 86, 610–615 (2009)

    Article  Google Scholar 

  47. Genon, G., Brizio, E.: Perspectives and limits for cement kilns as a destination for RDF. Waste Manage. (Oxford) 28, 2375–2385 (2008)

    Article  Google Scholar 

  48. Ministerio de Industria Energía y Turismo. La energía en España 2011. Available from: http://www.minetur.gob.es/energia/es-ES/Documents/Energia_Espana_2011_WEB.pdf (2012)

Download references

Acknowledgments

This article was developed from results obtained in the framework of the ECOURBAN project, “Methodology for energy and environmental impact assessment and the ecodesign of urban areas”, co-financed by the Spanish Ministry for Science and Innovation (Spanish National Plan for Scientific Research, Development and Technological Innovation 2008–2011—Ref. number ENE2010-19850) and coordinated by CIRCE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfonso Aranda Usón or Germán Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vásquez, D.Z., Usón, A.A., Bribián, I.Z., Ferreira, G. (2013). Environmental Performance of Applying Alternative Energies to the Collection, Transport and MBT Plant Within an Integrated MSW Management System. In: Ferreira, G. (eds) Alternative Energies. Advanced Structured Materials, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40680-5_12

Download citation

Publish with us

Policies and ethics