Skip to main content

Municipal Solid Waste

Energy Recovery from the Organic Fraction Based on Anaerobic Digestion

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 34))

Abstract

Municipal solid waste production has increased over the past years. The European Union Waste Framework Directive establishes different hierarchy levels for its management, where prevention and recycling appear as the most convenient management strategies for the organic fraction of MSW. This fraction can be either recycled by composting or by anaerobic digestion followed or not by composting. Anaerobic digestion has the advantage of producing energy instead of consuming it and it is widely described in this chapter. First, a revision of the state of the art of its implementation at full scale is carried out. Then, a detailed description of the environmental and operational factors affecting the process performance is described. Finally, methods for improving the yields of the anaerobic digestion process are considered, which includes biological and physical pre-treatment technologies together with the basis and possibilities of anaerobic co-digestion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AD:

Anaerobic digestion

AcoD:

Anaerobic co-digestion

CHP:

Combined heat and power unit

EU:

European Union

HRT:

Hydraulic retention time

LCFA:

Long chain fatty acid

MAD:

Mesophilic anaerobic digestion

MSW:

Municipal solid waste

MBT:

Mechanical–biological treatment

OLR:

Organic loading rate

RDF:

Refuse derived fuel

SOF:

Stabilized organic fraction

SRT:

Solid retention time

TAD:

Thermophilic anaerobic digestion

UASB:

Upflow anaerobic sludge blanket

VFA:

Volatile fatty acid

VS:

Volatile solids

WWTP:

Wastewater treatment plant

References

  1. Sturc, M.: Renewable energy: analysis of the latest data on energy from renewable sources. Statistics in focus Report 44/2012. European Union (2012)

    Google Scholar 

  2. Eurostat Statitstics.: Renewable energy statistics. European Union. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Renewable_energy_statistics (2010). Accessed 7 Nov 2012

  3. Directive 08/98/EC.: Waste Framework Directive. European Union, 19 Nov 2008

    Google Scholar 

  4. Baird, J., Hutton, M.K., Savage, A.L., Hipkin, A., Cruz, P., MacLeod, I.: Preparing new ground: how to put stabilized biowaste to proper use in landfill restoration. Waste Manag. World. http://www.waste-management-world.com/index/display/article-display/_printArticle/articles/waste-management-world/volume-7/issue-7/features/preparing-new-ground-how-to-put-stabilized-biowaste-to-proper-use-in-landfill-restoration.html(2012). Accessed 10 Nov 2012

  5. Cecchi, F., Traverso, P.G., Mata-Alvarez, J., Clancy, J., Zaror, C.: State of the art of R & D in the anaerobic digestion of municipal solid waste in Europe. Biomass 16, 257–284 (1988)

    Article  Google Scholar 

  6. De Baere, L.: Anaerobic digestión of solid waste: state-of-the-art. Water Sci. Technol. 41, 263–273 (2000)

    Google Scholar 

  7. Directive 99/31/EC.: The landfill of waste. European Union, 26 Apr 1999

    Google Scholar 

  8. De Baere, L., Mattheeuws, B.: Anaerobic Digestion of the organic fraction of municipal solid waste in Europe. OWS. http://www.ows.be/downloads/Anaerobic%20Digestion.pdf. Accessed 24 Sept 2012

  9. Demirel, B., Scherer, P.: The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev. Environ. Sci. Biotechnol. 7, 173–190 (2008)

    Article  Google Scholar 

  10. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T., Siegrist, H., Vavilin, V.A.: The IWA anaerobic digestion model no 1 (ADM1). Water Sci. Technol. 45, 65–73 (2002)

    Google Scholar 

  11. Veeken, A., Hamelers, B.: Effect of temperature on hydrolysis rates of selected biowaste components. Bioresour. Technol. 69, 249–254 (1999)

    Article  Google Scholar 

  12. Karakashev, D., Batstone, D.J., Trably, E., Angelidaki, I.: Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae. Appl. Environ. Microbiol. 72, 5138–5141 (2006)

    Article  Google Scholar 

  13. Chen, J., Cheng, J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008)

    Article  Google Scholar 

  14. Apples, L., Baeyens, J., Degreve, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust. 34, 755–781 (2008)

    Article  Google Scholar 

  15. Astals, S., Nolla-Ardèvol, V., Mata-Alvarez, J.: Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresour. Technol. 110, 63–70 (2012)

    Article  Google Scholar 

  16. Stroot, P.G., McMahon, K.D., Mackie, R.I., Raskin, L.: Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-I. Water Res. 35, 1804–1816 (2001)

    Article  Google Scholar 

  17. Kayhanian, M.: Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ. Technol. 20, 355–365 (1999)

    Article  Google Scholar 

  18. Angelidaki, I., Ahring, B.K.: Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res. 28, 727–731 (1994)

    Article  Google Scholar 

  19. Directive 06/12/EC.: Waste Directive. European Union, 5 Apr 2006

    Google Scholar 

  20. Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, 5478–5484 (2009)

    Article  Google Scholar 

  21. Environment DG, EU.: Working document on the biological treatment of biowaste, 2nd draft. European Union (2001)

    Google Scholar 

  22. Directive 86/278/EEC.: The protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. European Union, 12 June 1986

    Google Scholar 

  23. Regulation EC 1774/2002.: Guidelines for applications for new alternative methods of disposal or use of animal by-products under regulation. European Union, 3 Oct 2002

    Google Scholar 

  24. Environment DG, EU.: Working document on sludge 3rd draft. European Union (2000)

    Google Scholar 

  25. Directive 91/676/EEC.: The protection of waters against pollution caused by nitrates from agricultural sources. European Union, 12 Dec 1991

    Google Scholar 

  26. Sahlstrom, L.: A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour. Technol. 87, 161–166 (2003)

    Article  Google Scholar 

  27. Sanders, W.T., Veeken, A.H., Zeeman, G., Van-Lier, J.B.: Analysis and optimization of the AD process of OFMSW. In: Mata-Alvarez, J. (ed.) Biomethanization of the Organic Fraction of Municipal Solid Waste. IWA Publishing, London (2003)

    Google Scholar 

  28. Zhang, R., Gikas, P., Zhu, B., Lord, J., Choate, C., Rapport, J., El-Mashad, H., Jenkins, B.: Integration of rotatory drum reactor and anaerobic digestion technologies for treatment of municipal solid waste. CalRecycle. http://www.calrecycle.ca.gov/Publications/Default.aspx (2010). Accessed 24 Sept 2012

  29. Zhu, B., Gikas, P., Zhang, R., Lord, J., Jenkins, B., Li, X.: Characteristics and biogas production potential of municipal solid waste pretreated with rotary drum reator. Bioresour. Technol. 100, 1122–1129 (2009)

    Article  Google Scholar 

  30. Bochmann, G., Herfellner, T., Susanto, F., Kreuter, F., Pesta, G.: Application of enzymes in anaerobic digestion. Water Sci. Technol. 56, 29–35 (2007)

    Article  Google Scholar 

  31. Fernandez-Güelfo, L.A., Álvarez-Gallego, C., Sales-Márquez, D., Romero-García, L.I.: The effect of different pretreatments on biomethanation kinetics of industrial Organic Fraction of Municipal Solid Waste. Chem. Eng. J. 171, 411–417 (2011)

    Article  Google Scholar 

  32. Zhang, Y., Banks, C.J.: Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste. Waste Manag. (2012)

    Google Scholar 

  33. Biogas weser-ems.: Biogas-weser-ems GmbH & Co. http://www.biogas-weser-ems.de/en/technologie.php (2012). Accessed 25 Sept 2012

  34. Liu, X., Wang, W., Gao, X., Zhou, Y., Shen, R.: Effect on thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag. 32, 249–255 (2012)

    Article  Google Scholar 

  35. Cambi.: http://www.cambi.no/wip4/plant.epl?cat=10645&id=195088 (2012). Accessed 25 Sept 2012

  36. Elbeshbishy, E., Nakhla, G.: Comparative study of the effect of ultrasonification on the anaerobic biodegradability of food waste in single and two-stage systems. Bioresour. Technol. 102, 6449–6457 (2011)

    Article  Google Scholar 

  37. Shahriari, H., Warith, M., Hamoda, M., Kennedy, K.: Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag. 32, 41–52 (2012)

    Article  Google Scholar 

  38. Torres, M.L., Espinosa-Lleréns, M.C.: Effect of alkaline pretreatment on anaerobic digestion of solid waste. Waste Manag. 28, 2229–2234 (2008)

    Article  Google Scholar 

  39. Mata-Alvarez, J., Dosta, J., Macé, S., Astals, S.: Codigestion of solid wastes: a review of its uses and perspectives including modelling. Crit. Rev. Biotechnol. 31, 99–111 (2011)

    Article  Google Scholar 

  40. Astals, S., Ariso, M., Galí, A., Mata-Alvarez, J.: Co-digestion of pig manure and glycerine: experimental and modelling study. J. Environ. Manage. 92, 1091–1096 (2011)

    Article  Google Scholar 

  41. Pahl, O., Firth, A., MacLeod, I., Baird, J.: Anaerobic co-digestion of mechanically biologically treated municipal waste with primary sewage sludge—a feasibility study. Bioresour. Technol. 99, 3354–3364 (2008)

    Article  Google Scholar 

  42. Li, X., Li, L., Zheng, M., Fu, G., Lar, J.S.: Anaerobic co-digestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy Fuels 23, 4635–4639 (2009)

    Article  Google Scholar 

  43. Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., Longworth, J.: Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour. Technol. 99, 8288–8293 (2008)

    Article  Google Scholar 

  44. Zhang, L., Lee, Y.W., Jahng, D.: Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresour. Technol. 102, 5048–5059 (2011)

    Article  Google Scholar 

  45. Zhang, Y., Banks, C.J., Heaven, S.: Co-digestion of source segregated domestic food waste to improve process stability. Bioresour. Technol. 114, 168–178 (2012)

    Article  Google Scholar 

  46. Fernández, A., Sánchez, A., Font, X.: Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochem. Eng. J. 26, 22–28 (2005)

    Article  Google Scholar 

  47. Zhang, Y., Banks, C.J.: Co-digestion of the mechanically recovered organic fraction of municipal solid waste with slaughterhouse wastes. Biochem. Eng. J. 68, 129–137 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mata-Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Astals, S., Romero-Güiza, M., Mata-Alvarez, J. (2013). Municipal Solid Waste. In: Ferreira, G. (eds) Alternative Energies. Advanced Structured Materials, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40680-5_1

Download citation

Publish with us

Policies and ethics