Skip to main content

Realizations of Volume Frameworks

  • Conference paper
Automated Deduction in Geometry (ADG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7993))

Included in the following conference series:

Abstract

A volume framework is a (d+1)-uniform hypergraph together with real numbers associated to its edges. A realization is a labeled point set in R d for which the volumes of the d-dimensional simplices corresponding to the hypergraph edges have the pre-assigned values. A framework realization (shortly, a framework) is rigid if its underlying point set is determined locally up to affine volume-preserving transformations. If it ceases to be rigid when any volume constraint is removed, it is called minimally rigid.

We present a number of results on volume frameworks: a counterexample to a conjectured combinatorial characterization of minimal rigidity and a first enumerative lower bound. We also give upper bounds for the number of realizations of generic minimally rigid volume frameworks, based on degrees of naturally associated Grassmann varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asimow, L., Roth, B.: The rigidity of graphs. Transactions of the American Mathematical Society 245, 279–289 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M.: Discrete Differential Geometry. Oberwolfach Seminars, vol. 38. Birkhäuser, Basel (2008)

    Book  Google Scholar 

  3. Borcea, C.S.: Point configurations and Cayley-Menger varieties. Preprint ArXiv math/0207110 (2002)

    Google Scholar 

  4. Borcea, C.S., Streinu, I.: The number of embeddings of minimally rigid graphs. Discrete and Computational Geometry 31, 287–303 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dolgachev, I.: Lectures on Invariant Theory. London Math. Society Lecture Notes Series, vol. 296. Cambridge University Press (2003)

    Google Scholar 

  6. Harris, J.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 133. Springer, New York (1993)

    Google Scholar 

  7. Laman, G.: On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics 4, 331–340 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Maxwell, J.C.: On reciprocal figures, frames and diagrams of forces. Transactions of the Royal Society Edinburgh 26, 1–40 (1870)

    Article  Google Scholar 

  9. Mukai, S.: An Introduction to Invariants and Moduli. Cambridege Studies in Advanced Mathematics, vol. 81. Cambridge University Press (2003)

    Google Scholar 

  10. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd edn. Springer (1994)

    Google Scholar 

  11. Weyl, H.: The classical groups: their invariants and representations. Princeton Landmarks in Mathematics. Princeton University Press (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borcea, C.S., Streinu, I. (2013). Realizations of Volume Frameworks. In: Ida, T., Fleuriot, J. (eds) Automated Deduction in Geometry. ADG 2012. Lecture Notes in Computer Science(), vol 7993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40672-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40672-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40671-3

  • Online ISBN: 978-3-642-40672-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics