Skip to main content

Probabilistic Vector Machine: Scalability through Clustering Hybridization

  • Conference paper
Progress in Artificial Intelligence (EPIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8154))

Included in the following conference series:

  • 2818 Accesses

Abstract

In this paper, a hybrid clustering and classification algorithm is obtained by exploring the specific statistical model of a hyperplane classifier. We show how the seamless integration of the clustering component allows a substantial cost decrease in the training stage, without impairing the performance of the classifier. The algorithm is also robust to outliers and deals with training errors in a natural and efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.N., Boser, B.E., Guyon, I.: A training algorithm for optimal margin classifiers. In: COLT 1992 Proceedings of the Fifth Annual Workshop on Computational Learning, Pittsburgh, PA, USA, vol. 5, pp. 144–152. ACM, New York (1992)

    Google Scholar 

  2. Cortes, C., Vapnik, V.N.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  3. Vapnik, V.N.: Statistical learning theory. John Wiley and Sons Inc. (1998)

    Google Scholar 

  4. Chapelle, O., Vapnik, V.N.: Bounds on error expectation for support vector machines. Neural Computation 12(9), 2012–2036 (2000)

    Google Scholar 

  5. Chapelle, O., Vapnik, V.N.: Choosing multiple parameters for support vector machines. Machine Learning 46(1-3), 131–159 (2001)

    Google Scholar 

  6. Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for training support vector machines. The Journal of Machine Learning Research 6, 1889–1918 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3) (2011)

    Google Scholar 

  8. Yu, H., Yang, J., Han, J.: Classifying large data sets using svms with hierarchical clusters. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, pp. 306–315. ACM, New York (2003)

    Chapter  Google Scholar 

  9. Ligges, U., Krey, S.: Feature clustering for instrument classification. Computational Statistics 23, 279–291 (2011)

    Article  MathSciNet  Google Scholar 

  10. Awad, M., Khan, L., Bastani, F., Yen, I.-L.: An effective support vector machines (svm) performance using hierarchical clustering. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, USA, pp. 663–667. IEEE Computer Society, Washington (2004)

    Chapter  Google Scholar 

  11. Nath, J.S., Bhattacharyya, C., Murty, M.N.: Clustering based large margin classification: A scalable approach using socp formulation. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, pp. 374–379. ACM, New York (2006)

    Google Scholar 

  12. Sucilă, A.: A Distributed Statistical Binary Classifier. Probabilistic Vector Machine. Ph.D. Thesis, Alexandru Ioan Cuza University, Faculty of Computer Science (2012)

    Google Scholar 

  13. Cervantes, J., Li, X., Yu, W.: Support vector machine classification based on fuzzy clustering for large data sets. In: Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293, pp. 572–582. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Cervantes, J., Li, X., Yu, W., Li, K.: Support vector machine classification for large data sets via minimum enclosing ball clustering. Neurocomputing 71(4-6), 611–619 (2008)

    Article  Google Scholar 

  15. Nath, J.S., Bhattacharyya, C., Murty, M.N.: Clustering based large margin classification: a scalable approach using socp formulation. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 674–679. ACM, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cimpoeşu, M., Sucilă, A., Luchian, H. (2013). Probabilistic Vector Machine: Scalability through Clustering Hybridization. In: Correia, L., Reis, L.P., Cascalho, J. (eds) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science(), vol 8154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40669-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40669-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40668-3

  • Online ISBN: 978-3-642-40669-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics