Skip to main content

The Algebraic Theory of Parikh Automata

  • Conference paper
Algebraic Informatics (CAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8080))

Included in the following conference series:

Abstract

The Parikh automaton model equips a finite automaton with integer registers and imposes a semilinear constraint on the set of their final settings. Here the theory of typed monoids is used to characterize the language classes that arise algebraically. Complexity bounds are derived, such as containment of the unambiguous Parikh automata languages in NC1. Noting that DetAPA languages are positive supports of rational ℤ-series, DetAPA are further shown stronger than Parikh automata on unary langages. This suggests unary DetAPA languages as candidates for separating the two better known variants of uniform NC1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., Arvind, V., Mahajan, M.: Arithmetic complexity, Kleene closure, and formal power series. Theory Comput. Syst. 36(4), 303–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrington, D.A.M.: Bounded-width polynomial size branching programs recognize exactly those languages in NC1. J. Computer and System Sciences 38, 150–164 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of NC1. J. Association of Computing Machinery 35, 941–952 (1988)

    Article  Google Scholar 

  4. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J. Comput. Syst. Sci. 41(3), 274–306 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Behle, C., Krebs, A., Mercer, M.: Linear circuits, two-variable logic and weakly blocked monoids. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 147–158. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Behle, C., Krebs, A., Reifferscheid, S.: Typed monoids - an Eilenberg-like theorem for non regular languages. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742, pp. 97–114. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2010)

    Google Scholar 

  8. Büchi, J.R.: Weak second order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cadilhac, M., Finkel, A., McKenzie, P.: Bounded Parikh automata. In: Proc. 8th Internat. Conference on Words. EPTCS, vol. 63, pp. 93–102 (2011)

    Google Scholar 

  10. Cadilhac, M., Finkel, A., McKenzie, P.: Affine Parikh automata. RAIRO - Theoretical Informatics and Applications 46(4), 511–545 (2012)

    Article  MATH  Google Scholar 

  11. Cadilhac, M., Finkel, A., McKenzie, P.: Unambiguous constrained automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 239–250. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. J. Computer and System Sciences 57, 200–212 (1998)

    Article  MATH  Google Scholar 

  13. Eilenberg, S.: Automata, Languages, and Machines. Pure and Applied Mathematics, vol. B. Academic Press (1976)

    Google Scholar 

  14. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press (1972)

    Google Scholar 

  15. Fliess, M.: Propriétés booléennes des langages stochastiques. Mathematical Systems Theory 7(4), 353–359 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gill, J.: Computational complexity of probabilistic turing machines. SIAM J. Computing 6, 675–695 (1977)

    Article  MATH  Google Scholar 

  17. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pacific J. Mathematics 16(2), 285–296 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karianto, W.: Parikh automata with pushdown stack. PhD thesis, RWTH Aachen (2004)

    Google Scholar 

  19. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 681–696. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Krebs, A., Lange, K.J., Reifferscheid, S.: Characterizing TC0 in terms of infinite groups. Theory of Computing Systems 40(4), 303–325 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes around NC1 and L. Theory Comput. Syst. 46(3), 499–522 (2010)

    Article  MathSciNet  Google Scholar 

  22. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  23. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer, New York (1978)

    Book  MATH  Google Scholar 

  24. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  25. Turakainen, P.: Some closure properties of the family of stochastic languages. Information and Control 18(3), 253–256 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical Computer Science. Springer (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cadilhac, M., Krebs, A., McKenzie, P. (2013). The Algebraic Theory of Parikh Automata. In: Muntean, T., Poulakis, D., Rolland, R. (eds) Algebraic Informatics. CAI 2013. Lecture Notes in Computer Science, vol 8080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40663-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40663-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40662-1

  • Online ISBN: 978-3-642-40663-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics