Skip to main content

Learning Conditional Linear Gaussian Classifiers with Probabilistic Class Labels

  • Conference paper
Advances in Artificial Intelligence (CAEPIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8109))

Included in the following conference series:

Abstract

We study the problem of learning Bayesian classifiers (BC) when the true class label of the training instances is not known, and is substituted by a probability distribution over the class labels for each instance. This scenario can arise, e.g., when a group of experts is asked to individually provide a class label for each instance. We particularize the generalized expectation maximization (GEM) algorithm in [1] to learn BCs with different structural complexities: naive Bayes, averaged one-dependence estimators or general conditional linear Gaussian classifiers. An evaluation conducted on eight datasets shows that BCs learned with GEM perform better than those using either the classical Expectation Maximization algorithm or potentially wrong class labels. BCs achieve similar results to the multivariate Gaussian classifier without having to estimate the full covariance matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Côme, E., Oukhellou, L., Denoeux, T., Aknin, P.: Learning from partially supervised data using mixture models and belief functions. Pattern Recognit. 42, 334–348 (2009)

    Article  MATH  Google Scholar 

  2. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66, 191–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)

    Google Scholar 

  4. Friedman, N., Goldszmidt, M., Lee, T.J.: Bayesian network classification with continuous attributes: Getting the best of both discretization and parametric fitting. In: Shavlik, J.W. (ed.) Proceedings of the 15th ICML, pp. 179–187. Morgan Kaufmann (1998)

    Google Scholar 

  5. Vannoorenberghe, P., Smets, P.: Partially supervised learning by a credal EM approach. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 956–967. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B-Stat. Methodol. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Lauritzen, S.L., Wermuth, N.: Graphical models for associations between variables, some of which are qualitative and some quantitative. Ann. Stat. 17, 31–57 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Minsky, M.: Steps toward artificial intelligence. Proc. Inst. Radio Eng. 49, 8–30 (1961)

    MathSciNet  Google Scholar 

  9. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive Bayes: Aggregating one-dependence estimators. Mach. Learn. 58, 5–24 (2005)

    Article  MATH  Google Scholar 

  10. Friedman, N.: Learning belief networks in the presence of missing values and hidden variables. In: Fisher, D.H. (ed.) 14th ICML, pp. 125–133. Morgan Kaufmann (1997)

    Google Scholar 

  11. García, S., Herrera, F.: An extension on “Statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López-Cruz, P.L., Bielza, C., Larrañaga, P. (2013). Learning Conditional Linear Gaussian Classifiers with Probabilistic Class Labels. In: Bielza, C., et al. Advances in Artificial Intelligence. CAEPIA 2013. Lecture Notes in Computer Science(), vol 8109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40643-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40643-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40642-3

  • Online ISBN: 978-3-642-40643-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics