Skip to main content

K-Smallest Spanning Tree Segmentations

  • Conference paper
Pattern Recognition (GCPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8142))

Included in the following conference series:

Abstract

Real-world images often admit many different segmentations that have nearly the same quality according to the underlying energy function. The diversity of these solutions may be a powerful uncertainty indicator. We provide the crucial prerequisite in the context of seeded segmentation with minimum spanning trees (i.e. edge-weighted watersheds). Specifically, we show how to efficiently enumerate the k smallest spanning trees that result in different segmentations; and we prove that solutions are indeed found in the correct order. Experiments show that about half of the trees considered by our algorithm represent unique segmentations. This redundancy is orders of magnitude lower than can be achieved by just enumerating the k-smallest MSTs, making the algorithm viable in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batra, D., Yadollahpour, P., Guzman-Rivera, A., Shakhnarovich, G.: Diverse M-best solutions in markov random fields. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 1–16. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Blake, A., Kohli, P., Rother, C.: Markov random fields for vision and image processing. MIT Press (2011)

    Google Scholar 

  3. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region segmentation of objects in ND images. In: ICCV (2001)

    Google Scholar 

  4. Brendel, W., Todorovic, S.: Segmentation as maximumweight independent set. In: NIPS, vol. 4 (2010)

    Google Scholar 

  5. Briggman, K.L., Denk, W., et al.: Towards neural circuit reconstruction with volume electron microscopy techniques. Current Opinion in Neurobiology (2006)

    Google Scholar 

  6. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watershed: A unifying graph-based optimization framework. IEEE PAMI (2010)

    Google Scholar 

  7. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Minimum spanning forests and the drop of water principle. IEEE PAMI, 1362–1374 (2009)

    Google Scholar 

  8. Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithms, and applications. IEEE PAMI 26 (2004)

    Google Scholar 

  9. Fromer, M., Globerson, A.: An LP view of the M-best MAP problem. NIPS (2009)

    Google Scholar 

  10. Gabow, H.: Two algorithms for generating weighted spanning trees in order. SIAM Journal on Computing (1977)

    Google Scholar 

  11. Grady, L.: Random walks for image segmentation. IEEE PAMI 28 (2006)

    Google Scholar 

  12. Meyer, F.: Minimum spanning forests for morphological segmentation. In: Mathematical Morphology and its Applications to Image Processing, pp. 77–84. Springer (1994)

    Google Scholar 

  13. Meyer, F., Beucher, S.: Morphological segmentation. Journal of Visual Communication and Image Representation 1(1), 21–46 (1990)

    Article  Google Scholar 

  14. Nilsson, D.: An efficient algorithm for finding the M most probable configurations in probabilistic expert systems. Statistics and Computing 8(2), 159–173 (1998)

    Article  Google Scholar 

  15. Rollon, N.E., Dechter, R.: Inference schemes for M-best solutions for soft CSPs. In: Proceedings of Workshop on Preferences and Soft Constraints, vol. 2 (2011)

    Google Scholar 

  16. Seroussi, B., Golmard, J.: An algorithm directly finding the K most probable configurations in bayesian networks. International Journal of Approximate Reasoning 11(3), 205–233 (1994)

    Article  Google Scholar 

  17. Straehle, C.N., Köthe, U., Knott, G., Hamprecht, F.A.: Carving: Scalable interactive segmentation of neural volume electron microscopy images. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 653–660. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Tzeng, W.J., Wu, F.: Spanning trees on hypercubic lattices and nonorientable surfaces. Applied Mathematics Letters 13 (2000)

    Google Scholar 

  19. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE PAMI (1991)

    Google Scholar 

  20. Yanover, C., Weiss, Y.: Finding the AI most probable configurations using loopy belief propagation. In: NIPS (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Straehle, C., Peter, S., Köthe, U., Hamprecht, F.A. (2013). K-Smallest Spanning Tree Segmentations. In: Weickert, J., Hein, M., Schiele, B. (eds) Pattern Recognition. GCPR 2013. Lecture Notes in Computer Science, vol 8142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40602-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40602-7_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40601-0

  • Online ISBN: 978-3-642-40602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics