Advertisement

Blind Watermark Approach for Map Authentication Using Support Vector Machine

  • Mourad Raafat Mouhamed
  • Hossam M. Zawbaa
  • Eiman Tamah Al-Shammari
  • Aboul Ella Hassanien
  • Vaclav Snasel
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 381)

Abstract

This paper presents a blind and robust watermark approach for authentication 2D Map based on polar coordinates mapping and support vector machine is presented. The proposed system is composed of three phases. Firstly, in the preprocessing phase, the proposed algorithm mapped all vertices into polar coordinate system. Then, in the support vector machine phase, the watermark portable points will be chosen using support vector machine to reduce the number of these points which increases the imperceptibility without any effect on the robustness of the watermark. Afterwards, in the watermarking algorithm phase, the watermark is embedded into the map vertices using the random table of the decimal valued of the polar coordinates through the digit substitution of the decimal part. Finally, in the theoretical analysis and experimental results shows that the presented approach is robust against a various attacks including rotation, scaling, and translation. The proposed approach attained high imperceptibility.

Keywords

Support vector machine vector watermarking authentication geographic information system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shao, C., Wang, X., Xu, X., Niu, X.: Study on lossless data hiding algorithm for digital vector maps. Journal of Image and Graphics 12(2), 206–211 (2007)Google Scholar
  2. 2.
    Peng, F., Lei, Y., Long, M., Sun, X.: A reversible watermarking scheme for two-dimensional CAD engineering graphics based on improved difference expansion. Computer-Aided Design 43(8), 1018–1024 (2011)CrossRefGoogle Scholar
  3. 3.
    Anusudha, K., Sangeetha, A.: Digital Watermarking of Satellite Images Using Secured Spread Spectrum Technique. International Journal of Recent Trends in Engineering 1(1) (May 2009)Google Scholar
  4. 4.
    Wolthusen, S.D.: Proceedings of the IEEE Workshop on Information Assurance (2006)Google Scholar
  5. 5.
    Celik, M., Sharma, G., Tekalp, M.: Lossless generalized-LSB data embedding. IEEE Transactions on Image Processing 14(2), 253–266 (2005)CrossRefGoogle Scholar
  6. 6.
    Gaurav, B., Jonathan Wu, Q.M., Balasubramanian, R.: New robust adjustable logo watermarking scheme. Computers and Security 3(1), 40–58 (2012)Google Scholar
  7. 7.
    Nana, W., Chaoguang, M.: Reversible fragile watermarking for 2-D vector map authentication with localization. Computer-Aided Design 44, 320–330 (2012)CrossRefGoogle Scholar
  8. 8.
    Suk-Hwan, L., Ki-Ryong, K.: A watermarking for 3D mesh using the patch CEGIs. Digital Signal Processing 17, 396–413 (2007)CrossRefGoogle Scholar
  9. 9.
    Fei, P., Re-Si, G., Chang-Tsun, L., Min, L.: A semi-fragile watermarking algorithm for authenticating 2D CAD engineering graphics based on log-polar transformation. Computer-Aided Design 42, 1207–1216 (2010)CrossRefGoogle Scholar
  10. 10.
    Kitamura, I., Kanai, S., Kishinami, T.: Copyright protection of vector map using digital watermarking method based on discrete Fourier transform. In: IEEE Geoscience and Remote Sensing Symposium (IGARSS 2001), vol. 3, pp. 1191–1193 (2001)Google Scholar
  11. 11.
    Kang, H., Kim Kab, I., Choi, J.: A map data watermarking using the generalized square mask. In: Proceedings of IEEE International Symposium on Industrial Electronics (ISIE 2001), vol 3, pp. 1956-1958 (2001)Google Scholar
  12. 12.
    Solachidis, N., Nikolaidis, I.P.: Fourier Descriptors Watermarking of Vector Graphics Images. In: Proceedings of IEEE International Conference on Image Processing, vol. 3, pp. 9–12 (2001)Google Scholar
  13. 13.
    Solachidis, V., Pitas, I.: Watermarking polygonal lines using Fourier descriptors. IEEE Computer Graphics and Applications 24(3), 44–51 (2004)CrossRefGoogle Scholar
  14. 14.
    Ohbuchi, R., Ueda, H., Endoh, S.: Watermarking 2D vector maps in the mesh-spectral domain. In: Proceeding of Shape Modeling International, pp. 216–225 (2003)Google Scholar
  15. 15.
    Yuanyuan, L., Luping, X.: A blind watermarking of vector graphics images. In: Proceedings of Fifth International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2003), pp. 424–429 (2003)Google Scholar
  16. 16.
    Zhang, W., Ren, X., Zhang, G.L.: An robust object locating method based on log polar transform and affine transform. Journal of Image and Graphics 11(9), 1255–1259 (2006)Google Scholar
  17. 17.
    Jungyeop, K.: Robust Vector Digital Watermarking Using Angles and a Random Table. Advances in Information Sciences and Service Sciences 2(4) (December 2010)Google Scholar
  18. 18.
    Syed, F.T., Asifullah, K.A., Anwar, M.M.: Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack. World Academy of Science, Engineering and Technology 21, 1001–1006 (2008)Google Scholar
  19. 19.
    Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing Multiple Parameters for Support Vector Machines. Machine Learning 46(1-3), 131–159 (2002)zbMATHCrossRefGoogle Scholar
  20. 20.
    Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector machines. Technical report, Department of Computer Science and Information Engineering, National Taiwan University (2003)Google Scholar
  21. 21.
    Staelin, C.: Parameter selection for support vector machines. Technical report, HP Labs, Israel (2002)Google Scholar
  22. 22.
    Moghaddam, B., Yang, M.H.: Learning Gender with support faces. IEEE Transaction on Pattern Analysis and Machine Learning 24 (2002)Google Scholar
  23. 23.
    Mourad, R., Mouhamed, A.M., Hassanien, A.: Blind 2D Vector Data Watermarking Approach Using Random Table and Polar Coordinates. In: International Conference on Uncertainty Reasoning and Knowledge Engineering, pp. 67–70 (2012)Google Scholar
  24. 24.
    Wu, Q., Zhou, D.-X.: Analysis of support vector machine classification. Journal of Computer Analysis and Applications 8, 99–119 (2006)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Oracle® Spatial Developer’s Guide, 11g Release 2 (11.2) E11830-11Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mourad Raafat Mouhamed
    • 1
    • 6
  • Hossam M. Zawbaa
    • 2
    • 6
  • Eiman Tamah Al-Shammari
    • 3
  • Aboul Ella Hassanien
    • 4
    • 6
  • Vaclav Snasel
    • 5
  1. 1.Faculty of ScienceHelwan UniversityCairoEgypt
  2. 2.Faculty of Computers and InformationBeniSuef UniversityBeniSuefEgypt
  3. 3.Faculty of Computing Science and EngineeringKuwait UniversityKuwait
  4. 4.Faculty of Computers and InformationCairo UniversityEgypt
  5. 5.VSB-Technical University of OstravaCzech Republic
  6. 6.Scientific Research Group in Egypt (SRGE)Egypt

Personalised recommendations