A Blind Robust 3D-Watermarking Scheme Based on Progressive Mesh and Self Organization Maps

  • Mona M. Soliman
  • Aboul Ella Hassanien
  • Hoda M. Onsi
Part of the Communications in Computer and Information Science book series (CCIS, volume 381)


Most of progressive mesh (PM) transmission techniques, consist in iteratively decimating the mesh, while storing the information necessary to the process inversion. During the transmission or visualization the 3D content can be duplicated and redistributed by a pirate. Digital watermarking is considered as a good solution to this emerging problem. This paper focus on introducing a novel robust and blind mesh watermarking schema by converting the original triangle mesh into a multi-resolution format, consisting of a coarse base mesh and a sequence of refinement, the watermark bits are inserted through progressive mesh level of details, and extracted at refinement stage without any need for the original model. The watermark insertion is performed only on set of marked vertices come out from Self Organization Maps (SOM) clustering neural network. These vertices are used as candidates for watermark carriers that will hold watermark bits through progressive mesh transmission. The robustness of proposed techniques is evaluated experimentally by simulating attacks such as mesh smoothing, noise addition and mesh cropping.


Watermark Scheme Digital Watermark Marked Vertex Edge Collapse Progressive Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shinichi, M., Y.: Watermarking for 3D Polygons Using Wavelet Transform and Modified Traveling Salesman Problem. Journal of the Operations Research Society of Japan 52(4), 402–416 (2009)Google Scholar
  2. 2.
    Kanai, S., Data, H., Kishinami, T.: Digital Watermarking for 3D Polygons Using Multiresolution Wavelet Decomposition. In: Proceedings of 6th IFIP WG 5.2 GEO-6, pp. 296–307 (1998)Google Scholar
  3. 3.
    Ohbuchi, R., Aono, M.: Watermarking Three-Dimensional Polygonal Models Through Geometric and Topological Modifications. IEEE Journal on Selected Areas in Communications 16, 551–560 (1998)CrossRefGoogle Scholar
  4. 4.
    Benedens, O.: Geometry-based watermarking of 3D models. IEEE Computers and Applications 19(1), 46–55 (1999)CrossRefGoogle Scholar
  5. 5.
    Yeo, B., Yeung, M.M.: Watermarking 3D objects for verification. IEEE Computers and Applications 19(1), 36–45 (1999)CrossRefGoogle Scholar
  6. 6.
    Ohbuchi, R., Masuda, H., Aono, M.: Watermarking Three Dimensional Polygonal Models Through Geometric and Topological Modifications. IEEE Journal on Selected Areas in Communications 16(4), 551–560 (1998)CrossRefGoogle Scholar
  7. 7.
    Ohbuchi, R., Masuda, H., Aono, M.: Data Embedding Algorithms for Geometrical and non-Geometrical Targets in Three-Dimensional Polygonal Models. Computer Communications 21(15), 1344–1354 (1998)CrossRefGoogle Scholar
  8. 8.
    Cayre, F., Macq, B.: Data Hiding on 3-D Triangle Meshes. IEEE Trans. on Signal Processing 51(4), 939–949 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Agarwal, P., Prabhakaran, B.: Robust Blind Watermarking Mechanism for Point Sampled Geometry. In: Proc. of the ACM Multimedia and Security Workshop, pp. 175–186 (2007)Google Scholar
  10. 10.
    Wang, Y.P., Hu, M.: A New Watermarking Method for 3D Models Based on Integral Invariants. IEEE Trans. on Visualization and Computer Graphics 15(2), 285–294 (2009)CrossRefGoogle Scholar
  11. 11.
    Valette, S., Prost, R.: Wavelet-Based Multiresolution Analysis of Irregular Surface Meshes. IEEE Trans. on Visualization and Computer Graphics 10(2) (2004)Google Scholar
  12. 12.
    Praun, E., Hoppe, H., Finkelstein, A.: Robust Mesh Watermarking. In: SIGGRAPH Proceedings, pp. 69–76 (1999)Google Scholar
  13. 13.
    Kanai, S., Date, H., Kishinami, T.: Digital Watermarking for 3D Polygons Using Multi-Resolution Wavelet Decomposition. In: Proceedings of the Sixth IFIP WG 5.2 International Workshop on Geometric Modeling: Fundamentals and Applications (GEO-6), Japan, pp. 296–307 (1998)Google Scholar
  14. 14.
    Yin, K.K., Pan, Z.G., Shi, J.Y., Zhang, D.: Robust Mesh Watermarking Based on Multiresolution Processing. Computers & Graphics 25(3), 409–420 (2001)CrossRefGoogle Scholar
  15. 15.
    Guskov, I., Sweldens, W., Shroder, P.: Multiresolution Signal Processing for Meshes. In: Proceedings of SIGGRAPH 1999, pp. 49–56 (1999)Google Scholar
  16. 16.
    Ohbuchi, R., Takahashi, S., Miyazawa, T., Mukaiyama, A.: Watermarking 3D Polygonal Meshes in the Mesh Spectral Domain. In: Proceedings of the Graphics Interface, Canada, pp. 9–17 (2001)Google Scholar
  17. 17.
    Ohbuchi, R., Takahashi, S.: A frequency Domain Approach to Watermarking 3D Shapes. In: EUROGRAPHICS, Saarbrucken, Germany, vol. 21(3), pp. 2–6 (2002)Google Scholar
  18. 18.
    Hoppe, H.: Progressive Mesh. ACM SIGGRAPH 96, 99–108 (1996)MathSciNetGoogle Scholar
  19. 19.
    Soliman, M.M., Ella Hassanien, A., Onsi, H.M.: Robust Watermarking Approach for 3D Triangular Mesh using Self Organization Map. Submitted in Federated Confrence on Computer Science and Information System, Krakw, Poland (September 2013)Google Scholar
  20. 20.
    Lee, H., Dikici, C., Lavoué, G., Dupont, F.: Joint Reversible Watermarking and Progressive Compression of 3D Meshes. Visual Computer 27(6-8), 781–792 (2011)CrossRefGoogle Scholar
  21. 21.
    Pajarola, R., Rossignac, J.: Compressed Progressive Meshes. IEEE Transactions on Visualization and Computer Graphics 6(1), 79–93 (2000)CrossRefGoogle Scholar
  22. 22.
    Taubin, G., Gueziec, A., Horn, W., Lazarus, F.: Progressive Forest Split Compression. In: ACM SIGGRAPH, pp. 123–132 (1998)Google Scholar
  23. 23.
    Peng, J., Kuo, Y., Eckstein, I., Gopi, M.: Feature Oriented Progressive Lossless Mesh Coding. Computer Graphics Forum 29(7), 2029–2038 (2010)CrossRefGoogle Scholar
  24. 24.
    Valette, S., Chaine, R., Prost, R.: Progressive Lossless Mesh Compression via Incremental Parametric Refinement. In: Proceedings of the Symposium on Geometry Processing, vol. 28, pp. 1301–1310 (2009)Google Scholar
  25. 25.
    Hung-Kuang, C., Yung-Hung, C.: Progressive Watermarking on 3D Meshes. In: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–7 (2010)Google Scholar
  26. 26.
    Guthikonda, S.M.: Kohonen Self-Organizing Maps (2005)Google Scholar
  27. 27.
    Rojas, R.: Neural Networks A Systematic Introduction, A book Foreword by Jerome Feldman (502 p. 350 illustrations). Springer, Berlin (1996)Google Scholar
  28. 28.
    Cho, J.W., Prost, R., Jung, H.Y.: An Oblivious Watermarking for 3-D Polygonal Meshes Using Distribution of Vertex Norms. IEEE Transaction on Signal Processing 55(1), 144–152 (2005), doi:10.1007/11551492-24MathSciNetGoogle Scholar
  29. 29.
    Richard, M.C.: An incremental learning system based on features derived using fast Gabor transforms for the identification of textural objects. In: Proceedings of SPIE, Vision Geometry X, International Symposium on Optical Science and Technology, San Diego, California, USA, vol. 4476, pp. 109–119 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mona M. Soliman
    • 1
    • 2
  • Aboul Ella Hassanien
    • 1
    • 2
  • Hoda M. Onsi
    • 1
  1. 1.Faculty of Computers and InformationCairo UniversityCairoEgypt
  2. 2.Scientific Research Group in Egypt (SRGE)Egypt

Personalised recommendations