Skip to main content

Spinal Cord Tumors: Anatomic and Advanced Imaging

  • Chapter
  • First Online:

Abstract

Spinal cord tumors (intramedullary tumors) account for about 15–20 % of all CNS tumors with an incidence of 1:100,000 persons [1]. They occur more frequently in children than in adults where they account for about 35 % of all CNS tumors. Overall, glial-based cord tumors represent 90 % of these masses and astrocytomas are the most common ones accounting for about 29 % of all primary spinal cord tumors. In adults, ependymomas are more common than any other primary tumors and account for nearly 60 % of all spinal cord masses. Clinically, both of these tumor types affect younger patients, ages between 30 and 40 years, but astrocytomas tend to occur at an earlier age than ependymomas and as stated previously are more common in children [2]. Both tumors are more common in males than in females.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2ry:

Secondary

ADC:

Apparent diffusion coefficient

ADEM:

Acute disseminated encephalomyelitis

AKA:

As known as

BOLD:

Blood oxygen level-dependent

Cho:

Choline

CSF:

Cerebrospinal fluid

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

FA:

Fractional anisotropy

fMRI:

Functional magnetic resonance imaging

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MS:

Multiple sclerosis

NAA:

N-acetylaspartate

NF-2:

Neurofibromatosis type 2

NMO:

Neuromyelitis optica

T:

Tesla

VHL:

von Hippel-Lindau syndrome

WHO:

World Health Organization

References

  1. Koeller KK, et al. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics. 2000;20:1721–49.

    Article  CAS  PubMed  Google Scholar 

  2. Rossi A, et al. Tumors of the spine in children. Neuroimaging Clin N Am. 2001;17:17–35.

    Article  Google Scholar 

  3. Matsumoto T, et al. Cervical intramedullary glioblastoma: a report of a long-term survival case and review of the literature. J UOEH. 2008;30:413–20.

    PubMed  Google Scholar 

  4. Piotkin SR, et al. Spinal ependymomas in neurofibromatosis type 2: a retrospective analysis of 55 cases. J Neurosurg Spine. 2011;14:543–7.

    Article  Google Scholar 

  5. Ducreux D, et al. Diffusion tensor magnetic resonance imaging and fiber tracking in spinal cord lesions: current and future indications. Neuroimaging Clin N Am. 2001;17:137–47.

    Article  Google Scholar 

  6. Setzer M, et al. Diffusion Tensor imaging tractography in patients with intramedullary tumors: comparison with intraoperative findings and value for prediction of tumor resectability. J Neurosurg Spine. 2010;13:371–80.

    Article  PubMed  Google Scholar 

  7. Ducreux D, et al. Diffusion tensor magnetic resonance imaging and fiber tracking in spinal cord lesions: current and future indications. Neuroimaging Clin N Am. 2007;17:137–47.

    Article  PubMed  Google Scholar 

  8. Vargas MI, et al. Clinical applications of diffusion tensor tractography of the spinal cord. Neuroradiology. 2008;50:25–9.

    Article  PubMed  Google Scholar 

  9. Ducreux D, et al. MR diffusion tensor imaging and fiber tracking in 5 spinal cord astrocytomas. AJNR Am J Neuroradiol. 2006;27:214–6.

    CAS  PubMed  Google Scholar 

  10. Constantini S, et al. Intramedullary spinal cord tumors in children under the age of 3 years. J Neurosurg. 1996;85:1036–43.

    Article  CAS  PubMed  Google Scholar 

  11. Hygino da Cruz LCH. Can we perform spinal 1H-MR spectroscopy in daily clinical practice? AJNR Am J Neuroradiol. 2013;34:E128–9.

    Article  Google Scholar 

  12. Ho T, et al. Intramedullary spinal schwannoma: case report and review of preoperative magnetic resonance imaging features. Asian J Surg. 2006;29:306–8.

    Article  CAS  PubMed  Google Scholar 

  13. Colosimo C, et al. Magnetic resonance imaging of intramedullary spinal cord schwannomas. Report of two cases and review of the literature. J Neurosurg. 2003;99:114–7.

    PubMed  Google Scholar 

  14. Darwish BS, et al. Intramedullary ancient schwannoma of the cervical spinal cord: case report and review of literature. J Clin Neurosci. 2002;9:321–3.

    Article  CAS  PubMed  Google Scholar 

  15. Kim CH, et al. Spinal intramedullary lipoma: report of three cases. Spinal Cord. 2003;41:310–5.

    Article  PubMed  Google Scholar 

  16. Morandi X, et al. Dermal sinus and intramedullary spinal cord abscesses. Childs Nerv Syst. 1999;15:202–7.

    Article  CAS  PubMed  Google Scholar 

  17. Sharma NC, et al. Long-segment intramedullary spinal dermoid. Indian J Radiol Imaging. 2009;19:148–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Conti P, et al. Diastematomyelia and tumor in adults. Report of two cases and literature review. Spine. 2010;35:E1438–43.

    Article  PubMed  Google Scholar 

  19. Dorflinger-Hejlek E, et al. Diffusion-weighted MR imaging of intramedullary spinal cord abscess. AJNR Am J Neuroradiol. 2010;31:1651–2.

    Article  CAS  PubMed  Google Scholar 

  20. Gross BA, et al. Intramedullary spinal cord cavernous malformations. Neurosurg Focus. 2010;29:E14.

    Article  PubMed  Google Scholar 

  21. Khalatbari MR, et al. Pediatric intramedullary cavernous malformation of the conus medullaris: case report and review of the literature. Childs Nerv Syst. 2011;27:507–11.

    Article  PubMed  Google Scholar 

  22. McCormick PC, et al. Intramedullary ependymoma of the spinal cord. J Neurosurg. 1990;72:523–32.

    Article  CAS  PubMed  Google Scholar 

  23. Epstein FJ, et al. Adult intramedullary spinal cord ependymomas: the result of surgery in 38 patients. J Neurosurg. 1993;79:204–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ferrante L, et al. Intramedullary spinal cord ependymomas – a study of 45 cases with long-term follow-up. Acta Neurochir. 1992;119:74–9.

    Article  CAS  PubMed  Google Scholar 

  25. Levy RA. Paraganglioma of the filum terminale: MR findings. AJR Am J Roentgenol. 1993;160:851–2.

    Article  CAS  PubMed  Google Scholar 

  26. Thurnher MM, Law M. Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am. 2009;17:225–44.

    Article  PubMed  Google Scholar 

  27. Thurnher MM, et al. Demyelinating and infectious diseases of the spinal cord. Neuroimaging Clin N Am. 2001;17:37–55.

    Article  Google Scholar 

  28. Schwartz ED, et al. Diffusion-weighted imaging of the spinal cord. Neuroimaging Clin N Am. 2002;12:125–46.

    Article  PubMed  Google Scholar 

  29. Kuker W, et al. Diffusion-weighted MRI of spinal cord infarction. High resolution imaging and time course of diffusion abnormality. J Neurol. 2004;251:818–24.

    Article  PubMed  Google Scholar 

  30. Thurnher MM, Bammer R. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology. 2006;48:795–801.

    Article  PubMed  Google Scholar 

  31. Ellingson BM, et al. Diffusion tensor MR imaging of the neurologically intact human spinal cord. AJNR Am J Neuroradiol. 2008;29:1279–84.

    Article  CAS  PubMed  Google Scholar 

  32. Ng MC, et al. Cervical spinal cord BOLD fMRI study: modulation of functional activation by dexterity of dominant and non-dominant hands. Neuroimage. 2008;39:825–31.

    Article  PubMed  Google Scholar 

  33. Wei P, et al. Resting state networks in human cervical spinal cord observed with fMRI. Eur J Appl Physiol. 2010;108:265–71.

    Article  PubMed  Google Scholar 

  34. Bouwman CJC, et al. Spinal cord functional MRI at 3 T: gradient echo echo-planar imaging versus turbo spin echo. Neuroimage. 2008;43:288–96.

    Article  CAS  PubMed  Google Scholar 

  35. Lu H, et al. Quantitative measurement of spinal cord blood volume in humans using vascular-space-occupancy MRI. NMR Biomed. 2008;21:226–32.

    Article  PubMed  Google Scholar 

  36. Cooke FJ, et al. Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord. Magn Reson Med. 2004;51:1122–8.

    Article  CAS  PubMed  Google Scholar 

  37. Marliani AF, et al. Quantitative proton magnetic resonance spectroscopy of the human cervical spinal cord at 3 Tesla. Magn Reson Med. 2007;57:160–3.

    Article  CAS  PubMed  Google Scholar 

  38. Edden RAE, et al. Proton MR imaging of the medulla and cervical spinal cord. J Magn Reson Imaging. 2007;26:1101–5.

    Article  PubMed  Google Scholar 

  39. Kendi ATK, et al. MR spectroscopy of cervical spinal cord in patients with multiple sclerosis. Neuroradiology. 2004;46:764–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Castillo MD, FACR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castillo, M., Thurnher, M.M. (2014). Spinal Cord Tumors: Anatomic and Advanced Imaging. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics