Skip to main content

Functional Imaging in Lymphoma

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Whole-body imaging—at least from cervical to inguinal region—of patients with lymphoma is essential to accurately stage nodal and extranodal involvement. At diagnosis, the spatial extent of the disease and the bulk of the tumor is crucial for the choice of the treatment modalities for patients with either Hodgkin or non-Hodgkin lymphoma. Although diagnostic contrast-enhanced CT is still the main imaging modality for posttreatment follow-up, functional biomarker imaging—the integrated FDG-PET/CT—is now included both at initial staging and for the response assessment at the treatment completion in the international recommendations, as well as during the therapy in the clinical trial settings. For initial staging and the evaluation of treatment response, the advantages and the limitations of PET/CT and the emerging whole-body diffusion MR imaging with ADC mapping are analyzed in view of recent publications. The so-called hybrid imaging combining different biomarkers and modalities already brings useful information in order to improve clinical management of lymphoma patients compared to diagnostic CT alone. Functional imaging also allows better understanding of lymphoma diseases and has the potential to tailor individual patient treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

CT:

Computed tomography

DCE:

Dynamic contrast-enhanced

DLBCL:

Diffuse large B-cell lymphoma

DWI:

Diffusion-weighted imaging

FDG:

Fluorine-18 fluorodeoxyglucose

HL:

Hodgkin lymphoma

MRS:

Magnetic resonance spectroscopy

NHL:

Non-Hodgkin lymphoma

PET:

Positron emission tomography

SUV:

Standardized uptake value

References

  1. Roman E, Smith AG. Epidemiology of lymphomas. Histopathology. 2011;58:4–14.

    Article  PubMed  Google Scholar 

  2. Rudin M. Imaging readouts as biomarkers or surrogate parameters for the assessment of therapeutic interventions. Eur Radiol. 2007;17:2441–57.

    Article  PubMed  Google Scholar 

  3. Cheson BD, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.

    Article  PubMed  Google Scholar 

  4. Juweid ME, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol. 2007;25:571–8.

    Article  PubMed  Google Scholar 

  5. Schmidt GP, et al. High-resolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol. 2005;40:743–53.

    Article  PubMed  Google Scholar 

  6. Cuenod CA, et al. Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging. 2006;31:188–93.

    Article  CAS  PubMed  Google Scholar 

  7. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188:1622–35.

    PubMed  Google Scholar 

  8. Kwee TC, et al. Imaging in staging of malignant lymphoma: a systematic review. Blood. 2008;111:504–16.

    Article  CAS  PubMed  Google Scholar 

  9. Armitage JO. Staging non-Hodgkin lymphoma. CA Cancer J Clin. 2005;55:368–76.

    Article  PubMed  Google Scholar 

  10. Carbone PP, et al. Report of the committee on Hodgkin’s disease staging classification. Cancer Res. 1971;31:1860–1.

    CAS  PubMed  Google Scholar 

  11. Lister TA, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7:1630–6.

    CAS  PubMed  Google Scholar 

  12. Cheson BD, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17:1244.

    CAS  PubMed  Google Scholar 

  13. de Jong PA, et al. CT and 18F-FDG PET for noninvasive detection of splenic involvement in patients with malignant lymphoma. AJR Am J Roentgenol. 2009;192:745–53.

    PubMed  Google Scholar 

  14. Rini JN, et al. 18F-FDG PET versus CT for evaluating the spleen during initial staging of lymphoma. J Nucl Med. 2003;44:1072–4.

    PubMed  Google Scholar 

  15. Schaefer NG, et al. Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging – do we need contrast-enhanced CT? Radiology. 2004;232:823–9.

    Article  PubMed  Google Scholar 

  16. Rahmouni A, et al. Quantitative CT analysis for assessing response in lymphoma (Cheson’s criteria). Cancer Imaging. 2005;5(Spec No A):S102–6.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Dugdale PE, et al. CT measurement of perfusion and permeability within lymphoma masses and its ability to assess grade, activity, and chemotherapeutic response. J Comput Assist Tomogr. 1999;23:540–7.

    Article  CAS  PubMed  Google Scholar 

  18. Front D, et al. Aggressive non-Hodgkin lymphoma: early prediction of outcome with 67Ga scintigraphy. Radiology. 2000;214:253–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kaplan WD, et al. Gallium-67 imaging: a predictor of residual tumor viability and clinical outcome in patients with diffuse large-cell lymphoma. J Clin Oncol. 1990;8:1966–70.

    CAS  PubMed  Google Scholar 

  20. Vose JM, et al. Single-photon emission computed tomography gallium imaging versus computed tomography: predictive value in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation for non-Hodgkin’s lymphoma. J Clin Oncol. 1996;14:2473–9.

    CAS  PubMed  Google Scholar 

  21. Cheson BD. Role of functional imaging in the management of lymphoma. J Clin Oncol. 2011;29:1844–54.

    Article  PubMed  Google Scholar 

  22. Jhanwar YS, Straus DJ. The role of PET in lymphoma. J Nucl Med. 2006;47:1326–34.

    PubMed  Google Scholar 

  23. Seam P, et al. The role of FDG-PET scans in patients with lymphoma. Blood. 2007;110:3507–16.

    Article  CAS  PubMed  Google Scholar 

  24. Tsukamoto N, et al. The usefulness of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) and a comparison of (18)F-FDG-pet with (67)gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer. 2007;110:652–9.

    Article  PubMed  Google Scholar 

  25. Kostakoglu L, et al. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer. 2002;94:879–88.

    Article  PubMed  Google Scholar 

  26. Elstrom RL, et al. Combined PET and low-dose, noncontrast CT scanning obviates the need for additional diagnostic contrast-enhanced CT scans in patients undergoing staging or restaging for lymphoma. Ann Oncol. 2008;19:1770–3.

    Article  CAS  PubMed  Google Scholar 

  27. Paone G, et al. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate. Eur J Nucl Med Mol Imaging. 2009;36:745–50.

    Article  PubMed  Google Scholar 

  28. El-Galaly TC, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30:4508–14.

    Article  PubMed  Google Scholar 

  29. Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23:537–48.

    Article  CAS  PubMed  Google Scholar 

  30. Schoder H, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:4643–51.

    Article  PubMed  Google Scholar 

  31. Bodet-Milin C, et al. Investigation of FDG-PET/CT imaging to guide biopsies in the detection of histological transformation of indolent lymphoma. Haematologica. 2008;93:471–2.

    Article  PubMed  Google Scholar 

  32. Ngeow JY, et al. High SUV uptake on FDG-PET/CT predicts for an aggressive B-cell lymphoma in a prospective study of primary FDG-PET/CT staging in lymphoma. Ann Oncol. 2009;20(9):1543–7.

    Article  CAS  PubMed  Google Scholar 

  33. Juweid ME, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated international workshop criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23:4652–61.

    Article  PubMed  Google Scholar 

  34. Dupuis J, et al. Impact of [18F]fluorodeoxyglucose positron emission tomography response evaluation in patients with high tumor burden follicular lymphoma treated with immunochemotherapy: a prospective study from the Groupe d’Etudes des Lymphomes de l’Adulte and GOELAMS. J Clin Oncol. 2012;30:4317–22.

    Article  CAS  PubMed  Google Scholar 

  35. Haioun C, et al. [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood. 2005;106:1376–81.

    Article  CAS  PubMed  Google Scholar 

  36. Mikhaeel NG, et al. 18-FDG-PET as a prognostic indicator in the treatment of aggressive non-Hodgkin’s lymphoma-comparison with CT. Leuk Lymphoma. 2000;39:543–53.

    Article  CAS  PubMed  Google Scholar 

  37. Mikhaeel NG, et al. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol. 2005;16:1514–23.

    Article  CAS  PubMed  Google Scholar 

  38. Safar V, et al. Interim [18F]fluorodeoxyglucose positron emission tomography scan in diffuse large B-cell lymphoma treated with anthracycline-based chemotherapy plus rituximab. J Clin Oncol. 2012;30:184–90.

    Article  CAS  PubMed  Google Scholar 

  39. Jerusalem G, Beguin Y. The place of positron emission tomography imaging in the management of patients with malignant lymphoma. Haematologica. 2006;91:442–4.

    PubMed  Google Scholar 

  40. Lin C, et al. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med. 2007;48:1626–32.

    Article  PubMed  Google Scholar 

  41. Casasnovas RO, et al. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood. 2011;118:37–43.

    Article  CAS  PubMed  Google Scholar 

  42. Hutchings M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107:52–9.

    Article  CAS  PubMed  Google Scholar 

  43. Gallamini A, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol. 2007;25:3746–52.

    Article  CAS  PubMed  Google Scholar 

  44. Markova J, et al. FDG-PET for assessment of early treatment response after four cycles of chemotherapy in patients with advanced-stage Hodgkin’s lymphoma has a high negative predictive value. Ann Oncol. 2009;20:1270–4.

    Article  CAS  PubMed  Google Scholar 

  45. Duhrsen U, et al. Positron emission tomography guided therapy of aggressive non-Hodgkin lymphomas – the PETAL trial. Leuk Lymphoma. 2009;50:1757–60.

    Article  PubMed  Google Scholar 

  46. Meignan M, et al. Report on the first international workshop on interim-PET-scan in lymphoma. Leuk Lymphoma. 2009;50:1257–60.

    Article  PubMed  Google Scholar 

  47. Meignan M, et al. Report on the second international workshop on interim positron emission tomography in lymphoma held in Menton, France, 8–9 April 2010. Leuk Lymphoma. 2010;51:2171–80.

    Article  PubMed  Google Scholar 

  48. Casasnovas RO, et al. Early interim PET scans in diffuse large B-cell lymphoma: can there be consensus about standardized reporting, and can PET scans guide therapy choices? Curr Hematol Malig Rep. 2012;7:193–9.

    Article  PubMed  Google Scholar 

  49. Buck AK, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66:11055–61.

    Article  CAS  PubMed  Google Scholar 

  50. Herrmann K, et al. A pilot study to evaluate 3′-deoxy-3′-18F-fluorothymidine pet for initial and early response imaging in mantle cell lymphoma. J Nucl Med. 2011;52:1898–902.

    Article  CAS  PubMed  Google Scholar 

  51. Huang MQ, et al. Monitoring response to chemotherapy of non-Hodgkin’s lymphoma xenografts by T(2)-weighted and diffusion-weighted MRI. NMR Biomed. 2008;21:1021–9.

    Article  CAS  PubMed  Google Scholar 

  52. Rahmouni A, et al. Lymphoma: monitoring tumor size and signal intensity with MR imaging. Radiology. 1993;188:445–51.

    CAS  PubMed  Google Scholar 

  53. Rahmouni A, et al. Lymphoma: imaging in the evaluation of residual masses. Cancer Imaging. 2001;2:93–5.

    Google Scholar 

  54. Rahmouni A, et al. Mediastinal lymphoma: quantitative changes in gadolinium enhancement at MR imaging after treatment. Radiology. 2001;219:621–8.

    Article  CAS  PubMed  Google Scholar 

  55. Rahmouni A, et al. Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology. 2003;229:710–7.

    Article  PubMed  Google Scholar 

  56. Oriol A, et al. In vivo quantification of response to treatment in patients with multiple myeloma by 1H magnetic resonance spectroscopy of bone marrow. MAGMA. 2007;20:93–101.

    Article  CAS  PubMed  Google Scholar 

  57. Huang MQ, et al. In vivo monitoring response to chemotherapy of human diffuse large B-cell lymphoma xenografts in SCID mice by 1H and 31P MRS. Acad Radiol. 2007;14:1531–9.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Lee SC, et al. In vivo (1)H MRS of WSU-DLCL2 human non-Hodgkin’s lymphoma xenografts: response to rituximab and rituximab plus CHOP. NMR Biomed. 2009;22:259–65.

    Article  CAS  PubMed  Google Scholar 

  59. Lee SC, et al. Early detection of radiation therapy response in non-Hodgkin’s lymphoma xenografts by in vivo 1H magnetic resonance spectroscopy and imaging. NMR Biomed. 2010;23:624–32.

    Article  CAS  PubMed  Google Scholar 

  60. Le Bihan D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.

    PubMed  Google Scholar 

  61. Nakayama T, et al. Usefulness of the calculated apparent diffusion coefficient value in the differential diagnosis of retroperitoneal masses. J Magn Reson Imaging. 2004;20:735–42.

    Article  PubMed  Google Scholar 

  62. Sumi M, et al. Diagnostic ability of apparent diffusion coefficients for lymphomas and carcinomas in the pharynx. Eur Radiol. 2007;17:2631–7.

    Article  PubMed  Google Scholar 

  63. Toh CH, et al. Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. AJNR Am J Neuroradiol. 2008;29:471–5.

    Article  PubMed  Google Scholar 

  64. Abdulqadhr G, et al. Whole-body diffusion-weighted imaging compared with FDG-PET/CT in staging of lymphoma patients. Acta Radiol. 2011;52:173–80.

    Article  PubMed  Google Scholar 

  65. Gu J, et al. Whole-body diffusion-weighted imaging: the added value to whole-body MRI at initial diagnosis of lymphoma. AJR Am J Roentgenol. 2011;197:W384–91.

    PubMed  Google Scholar 

  66. Kwee TC, et al. Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Invest Radiol. 2009;44(10):683–90.

    Article  PubMed  Google Scholar 

  67. Kwee TC, et al. Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol. 2010;40:1592–602. quiz 1720–1.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Lin C, et al. Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol. 2010;20:|2027–38.

    Article  PubMed  Google Scholar 

  69. van Ufford HM, et al. Newly diagnosed lymphoma: initial results with whole-body T1-weighted, STIR, and diffusion-weighted MRI compared with 18F-FDG PET/CT. AJR Am J Roentgenol. 2011;196:662–9.

    PubMed  Google Scholar 

  70. Lin C, et al. Whole-body diffusion-weighted imaging with apparent diffusion coefficient mapping for treatment response assessment in patients with diffuse large B-cell lymphoma: pilot study. Invest Radiol. 2011;46:341–9.

    PubMed  Google Scholar 

  71. Wu X, et al. Diffusion-weighted MRI in early chemotherapy response evaluation of patients with diffuse large B-cell lymphoma – a pilot study: comparison with 2-deoxy-2-fluoro- D-glucose-positron emission tomography/computed tomography. NMR Biomed. 2011;24:1181–90.

    Article  CAS  PubMed  Google Scholar 

  72. Takahara T, et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22:275–82.

    PubMed  Google Scholar 

  73. Lin C, et al. Whole-body diffusion magnetic resonance imaging in the assessment of lymphoma. Cancer Imaging. 2012;12:403–8.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Lin C, et al. Whole-body diffusion-weighted imaging in lymphoma. Cancer Imaging. 2010;10(Suppl A):S172–8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Funding Support

The National Science Council (NSC) – Taiwan

The Société Francaise de Radiologie (SFR) – France

The Agence Nationale de la Recherche (ANR) – France

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Rahmouni MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lin, C. et al. (2014). Functional Imaging in Lymphoma. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics