Skip to main content

Functional Imaging in Clinical Use for the Assessment of Lymph Nodes in Oncological Patients

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

The application of functional imaging techniques in the evaluation of lymph nodes has supposed a qualitative improvement in their detection and characterization. Compared with classical morphological criteria, functional imaging techniques have demonstrated higher accuracy for outcome prediction in oncological malignancies and in treatment monitorization. PET-CT and DWI are the most extended functional techniques used in clinical practice for lymph nodes characterization, evaluating functional characteristics such as metabolism and cellularity. There are other functional techniques to assess angiogenesis of lymph nodes, like DCE-CT and DCE-MRI. Direct and indirect lymphography and the use of specific lymphotropic contrast agents allow the evaluation of lymph paths and also the study of the internal structure of lymph nodes. Ultrasound functional techniques such as elastography and contrast-enhanced ultrasonography may be used as useful complementary tools in superficial lymph node characterization. The rational use of the functional techniques described in this chapter might lead to a better understanding and evaluation of the lymphatic system in oncologic patients routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

CEUS:

Contrast-enhanced ultrasonography

CT:

Computed tomography

DCE-CT:

Dynamic contrast-enhanced computed tomography

DCE-MRI:

Dynamic contrast-enhanced magnetic resonance imaging

DWI:

Diffusion-weighted imaging

DWIBS:

Diffusion-weighted imaging with background signal suppression

18FDG:

18Flourodeoxyglucose

FIGO:

International Federation of Gynecology and Obstetrics

IVIM:

Intravoxel incoherent motion

MIP:

Maximum intensity projection

MRI:

Magnetic resonance imaging

MRL:

Magnetic resonance lymphography

NSCLC:

Non-small cell lung carcinoma

PET:

Positron emission tomography

RES:

Reticuloendothelial system

ROI:

Region of interest

SCC:

Squamous cell carcinoma

SN:

Sentinel node

SNR:

Signal/noise ratio

STIR:

Short TI inversion recovery

SUV:

Standardized uptake value

US:

Ultrasonography

USPIO:

Ultrasmall superparamagnetic particle iron oxide

VEGF:

Vascular endothelial grow factor

WB-DWI:

Whole-body diffusion-weighted imaging

References

  1. Toble N, Detmar M. Tumor and lymph node lymphangiogenesis—impact on cancer metastasis. J Leukoc Biol. 2006;80:691–6.

    Google Scholar 

  2. Ioachim H. Lymph node pathology. 2nd ed. Philadelphia: JP Lippincott; 1994.

    Google Scholar 

  3. Kosuçu P, et al. Mediastinal lymph nodes: assessment with diffusion-weighted MR imaging. J Magn Reson Imaging. 2009;30:292–7.

    PubMed  Google Scholar 

  4. Cristofanilli M, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.

    CAS  PubMed  Google Scholar 

  5. Cummings B. Radiation therapy and the treatment of the cervical lymph nodes. In: Cummings C, Fredrickson J, Harker L, et al., editors. Otolaryngology head and neck surgery, Vol 2. 2nd ed. St. Louis: Mosby Year Book; 1993. p. 1626–48.

    Google Scholar 

  6. Daneshmand S, et al. Prognosis of patients with lymph node positive prostate cancer following radical prostatectomy: long-term results. J Urol. 2004;172:2252–5.

    PubMed  Google Scholar 

  7. Neubauer N, Lurain J. The role of lymphadenectomy in surgical staging of endometrial cancer. Int J Surg Oncol. 2011. doi:10.1155/2011/81464. Article ID 814649.

    PubMed Central  PubMed  Google Scholar 

  8. Zand KR, et al. Magnetic resonance imaging of the cervix. Cancer Imaging. 2007;7:69–76.

    PubMed Central  PubMed  Google Scholar 

  9. Morton DL, et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127:392–9.

    CAS  PubMed  Google Scholar 

  10. Cabanas RM. An approach for the treatment of penile carcinoma. Cancer. 1977;39:456–66.

    CAS  PubMed  Google Scholar 

  11. Vera DR, et al. Sentinel node imaging via a non particulate receptor-binding radiotracer. J Nucl Med. 1997;38:530–5.

    CAS  PubMed  Google Scholar 

  12. Veit P, et al. Lymph node staging with dual-modality PET/CT: enhancing the diagnostic accuracy in oncology. Eur J Radiol. 2006;58:383–9.

    PubMed  Google Scholar 

  13. Haberkorn U, et al. FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models. Nucl Med Biol. 1994;21:827–34.

    CAS  PubMed  Google Scholar 

  14. Ganeshalingam S, Koh DM. Nodal staging. Cancer Imaging. 2009;9:104–11.

    PubMed Central  PubMed  Google Scholar 

  15. Kubota R, et al. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33:1972–80.

    CAS  PubMed  Google Scholar 

  16. Merchant TE, et al. Sarcoidosis following chemotherapy for Hodgkin’s disease. Leuk Lymphoma. 1994;13:339–47.

    CAS  PubMed  Google Scholar 

  17. Hunt BM, et al. Sarcoidosis as a benign cause of lymphadenopathy in cancer patients. Am J Surg. 2009;197:629–32.

    PubMed  Google Scholar 

  18. Elstrom RL, et al. Combined PET and low-dose, noncontrast CT scanning obviates the need for additional diagnostic contrast-enhanced CT scans in patients undergoing staging or restaging for lymphoma. Ann Oncol. 2008;19:1770–3.

    CAS  PubMed  Google Scholar 

  19. Schaefer NG, et al. Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging – do we need contrast-enhanced CT? Radiology. 2004;232:823–9.

    PubMed  Google Scholar 

  20. Patridge S, et al. 2 fluorine-18-fluoro-2-deoxy-D glucose positron emission tomography in the pretreatment staging of Hodgkin’s disease: influence on patient management in a single institution. Ann Oncol. 2000;11:1273–9.

    Google Scholar 

  21. Liao LJ, et al. Detection of cervical lymph node metastasis in head and neck cancer patients with clinically N0 neck-a meta- analysis comparing different imaging modalities. BMC Cancer. 2012;12:236.

    PubMed Central  PubMed  Google Scholar 

  22. Adams S, et al. Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med. 1998;25:1255–60.

    CAS  PubMed  Google Scholar 

  23. Kubicek GJ, et al. FDG-PET staging and importance of lymph node SUV in head and neck cancer. Head Neck Oncol. 2010;2:19.

    PubMed Central  PubMed  Google Scholar 

  24. Menda Y, Graham MM. Update on 18F-fluorodeoxyglucose/positron emission tomography and positron emission tomography/computed tomography imaging of squamous head and neck cancers. Semin Nucl Med. 2005;35:214–9.

    PubMed  Google Scholar 

  25. Noble F, et al. Impact of integrated PET/CT in the staging of oesophageal cancer: a UK population based cohort study. Clin Radiol. 2009;64:699–705.

    CAS  PubMed  Google Scholar 

  26. Schoenfeld JD, et al. PET/CT of cancer patients: part 2, deformable registration imaging before and after chemotherapy for radiation treatment planning in head and neck cancer. AJR Am J Roentgenol. 2012;199:968–74.

    PubMed  Google Scholar 

  27. Schwartz DL, et al. FDG PET/CT imaging for pre radiotherapy staging of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:129–36.

    PubMed  Google Scholar 

  28. Imsande HM, et al. 18FDG-PET/CT as a predictive biomarker of outcome in patients with head and neck nonsquamous cell carcinoma. AJR Am J Roentgenol. 2011;197:976–80.

    PubMed  Google Scholar 

  29. Kitagawa Y, et al. FDG PET to evaluate combined intra-arterial chemotherapy and radiotherapy of head and neck neoplasms. J Nucl Med. 1999;40:1132–7.

    CAS  PubMed  Google Scholar 

  30. Lardinois D, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 2003;348:2500–7.

    PubMed  Google Scholar 

  31. Cerfolio RJ, et al. The accuracy of integrated PET/CT compared with dedicated PET alone for the staging of patients with non-small cell lung cancer. Ann Thorac Surg. 2004;78:1017–23.

    PubMed  Google Scholar 

  32. Sánchez Sánchez R, et al. Utilidad de la PET/TAC en la estadificación mediastínica del cáncer de pulmón de células no pequeñas en estadio III (N2). Rev Esp Med Nucl. 2011;30:211–6.

    PubMed  Google Scholar 

  33. Silvestri GA, et al. American College of Chest Physicians. Noninvasive staging of non-small cell lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007;132:178S–201.

    PubMed  Google Scholar 

  34. Hu M, et al. Value of dual-time-point FDG PET/CT for mediastinal nodal staging in non–small-cell lung cancer patients with lung comorbidity. Clin Nucl Med. 2011;36:429–33.

    PubMed  Google Scholar 

  35. Cooper KL, et al. Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: A systematic review and meta-analysis. Eur J Surg Oncol. 2011;37:187–98.

    CAS  PubMed  Google Scholar 

  36. El-Maraghi RH, Kielar AZ. PET vs sentinel lymph node biopsy for staging melanoma: a patient intervention, comparison, outcome analysis. J Am Coll Radiol. 2008;5:924–31.

    PubMed  Google Scholar 

  37. Lu YY, et al. A systematic review and meta-analysis of pre-therapeutic lymph node staging of colorectal cancer by 18F-FDG PET or PET/CT. Nucl Med Commun. 2012;33:1127–33.

    PubMed  Google Scholar 

  38. Pichio M, et al. Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med. 2006;47:938–44.

    Google Scholar 

  39. Beheshti M, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33.

    PubMed  Google Scholar 

  40. Guerra L, et al. Change in glucose metabolism measured by 18-FDG PET/CT as predictor of histopathologic response to neoadjuvant treatment in rectal cancer. Abdom Imaging. 2011;36:38–45.

    PubMed  Google Scholar 

  41. Zhang HQ, et al. Prognostic value of serial [18F]fluorodeoxyglucose PET-CT uptake in stage III patients with non-small cell lung cancer treated by concurrent chemoradiotherapy. Eur J Radiol. 2011;77:92–6.

    PubMed  Google Scholar 

  42. Park SH, et al. Comparison of diffusion- weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol. 2012;22:18–25.

    PubMed  Google Scholar 

  43. Cheson BD, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.

    PubMed  Google Scholar 

  44. Mikhaeel NG, et al. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol. 2005;16:1514–23.

    CAS  PubMed  Google Scholar 

  45. Brooks RA, Powell MA. Novel imaging modalities in gynecologic cancer. Curr Oncol Rep. 2009;11:466–72.

    PubMed  Google Scholar 

  46. Calvo FA, et al. (18)F-FDG PET bio-metabolic monitoring of neoadjuvant therapy effects in rectal cancer: focus on nodal disease characteristics. Radiother Oncol. 2010;97:212–6.

    PubMed  Google Scholar 

  47. Jamil LH, et al. Staging and restaging of advanced esophageal cancer. Curr Opin Gastroenterol. 2008;24:530–4.

    PubMed  Google Scholar 

  48. Cerfolio RJ, et al. Restaging patients with N2 (stage IIIa) non-small cell lung cancer after neoadjuvant chemoradiotherapy: a prospective study. J Thorac Cardiovasc Surg. 2006;131:1229–35.

    PubMed  Google Scholar 

  49. Rousseau C, et al. FDG PET evaluation of early axillary lymph node response to neoadjuvant chemotherapy in stage II and III breast cancer patients. Eur J Nucl Med Mol Imaging. 2011;38:1029–36.

    CAS  PubMed  Google Scholar 

  50. Abdel Razek AA, et al. Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol. 2006;16:1468–77.

    PubMed  Google Scholar 

  51. Nakai G, et al. Detection and evaluation of pelvic lymph nodes in patients with gynecologic malignancies using body diffusion-weighted magnetic resonance imaging. J Comput Assist Tomogr. 2008;32:764–8.

    PubMed  Google Scholar 

  52. Mizukami Y, et al. Diffusion-weighted magnetic resonance imaging for detecting lymph node metastasis of rectal cancer. World J Surg. 2011;35:895–9.

    PubMed  Google Scholar 

  53. Padhani AR, et al. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261:700–18.

    PubMed  Google Scholar 

  54. Ono K, et al. Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fl uoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging. 2009;29:336–40.

    PubMed  Google Scholar 

  55. Choi E, et al. Node-by-node correlation between MR and PET/CT in patients with uterine cervical cancer: diffusion-weighted imaging versus size-based criteria on T2WI. Eur Radiol. 2009;19:2024–32.

    PubMed  Google Scholar 

  56. Abdulqadhr G, et al. Whole-body diffusion-weighted imaging compared with FDG-PET/CT in staging of lymphoma patients. Acta Radiol. 2011;52:173–80.

    PubMed  Google Scholar 

  57. Vandecaveye V, et al. Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology. 2009;251:134–44.

    PubMed  Google Scholar 

  58. Park SO, et al. Relative apparent diffusion coefficient: determination of reference site and validation of benefit for detecting metastatic lymph nodes in uterine cervical cancer. J Magn Reson Imaging. 2009;29:383–90.

    PubMed  Google Scholar 

  59. Lin G, et al. Detection of lymph nodes metastatic in cervical and uterine cancers by diffusion-weighted magnetic resonance imaging at 3T. J Magn Reson Imaging. 2008;28:128–35.

    PubMed  Google Scholar 

  60. Herneth AM, et al. Diffusion weighted imaging: lymph nodes. Eur J Radiol. 2010;76:398–405.

    CAS  PubMed  Google Scholar 

  61. Park JK, et al. High-resolution diffusion-weighted imaging of neck lymph nodes using 2D-single-shot interleaved multiple inner volume imaging diffusion-weighted echo-planar imaging at 3T. Am J Neurorad. 2011;32:1173–7.

    CAS  Google Scholar 

  62. Lu Y, et al. Comparing primary tumors and metastatic nodes in head and neck cancer using intravoxel incoherent motion imaging: a preliminary experience. J Comput Assist Tomogr. 2013;37:346–52.

    PubMed  Google Scholar 

  63. Thoeny HC, et al. Diffusion-weighted MR imaging in the head and neck. Radiology. 2012;263:19–32.

    PubMed  Google Scholar 

  64. Perrone A, et al. Diffusion-weighted MRI in cervical lymph nodes: differentiation between benign and malignant lesions. Eur J Radiol. 2011;77:281–6.

    PubMed  Google Scholar 

  65. De Bondt RB, et al. Diagnostic accuracy and additional value of diffusion-weighted imaging for discrimination of malignant cervical lymph nodes in head and neck squamous cell carcinoma. Neuroradiology. 2009;51:183–92.

    PubMed  Google Scholar 

  66. Holzapfel K, et al. Value of diffusion weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur J Radiol. 2009;72:381–7.

    PubMed  Google Scholar 

  67. Sumi M, et al. Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. Am J Neurorad. 2003;24:1627–34.

    Google Scholar 

  68. Maeda M, et al. Usefulness of the apparent diffusion coefficient in line scan diffusion-weighted imaging for distinguishing between squamous cell carcinomas and malignant lymphomas of the head and neck. Am J Neurorad. 2005;26:1186–92.

    Google Scholar 

  69. Kato H, et al. Necrotic cervical nodes: usefulness of diffusion-weighted MR imaging in the differentiation of suppurative lymphadenitis from malignancy. Eur J Radiol. 2013;82:e28–35.

    PubMed  Google Scholar 

  70. Nomori H, et al. Diffusion-weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thorac Cardiovasc Surg. 2008;135:816–22.

    PubMed  Google Scholar 

  71. Chen W, et al. Whole-body diffusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up? Magn Reson Imaging. 2010;28:613–20.

    CAS  PubMed  Google Scholar 

  72. Ohno Y, et al. Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative and qualitative assessment with STIR turbo spin-echo MR imaging. Radiology. 2004;231:872–9.

    PubMed  Google Scholar 

  73. Ohno Y, et al. Non-small cell lung cancer: whole-body MR examination for M-stage assessment- utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology. 2008;248:643–54.

    PubMed  Google Scholar 

  74. Wu LM, et al. Preoperative mediastinal and hilar nodal staging with diffusion-weighted magnetic resonance imaging and fluorodeoxyglucose positron emission tomography/computed tomography in patients with non-small-cell lung cancer: which is better? J Surg Res. 2012;178:304–14.

    PubMed  Google Scholar 

  75. Ohno Y, et al. N stage disease in patients with non-small cell lung cancer: efficacy of quantitative and qualitative assessment with STIR turbo spin-echo imaging, diffusion-weighted MR imaging, and fluorodeoxyglucose PET/CT. Radiology. 2011;261:605–15.

    PubMed  Google Scholar 

  76. Hedgire SS, et al. Pelvic nodal imaging. Radiol Clin N Am. 2012;50:1111–25.

    PubMed  Google Scholar 

  77. Kim JK, et al. Feasibility of diffusion-weighted imaging in the differentiation of metastatic from nonmetastatic lymph nodes: early experience. J Magn Reson Imaging. 2008;28:714–9.

    PubMed  Google Scholar 

  78. Chen YB, et al. Discrimination of metastatic from hyperplastic pelvic lymph nodes in patients with cervical cancer by diffusion-weighted magnetic resonance imaging. Abdom Imaging. 2011;36:102–9.

    PubMed  Google Scholar 

  79. Kitajima K, et al. Comparison of DWI and PET/CT in evaluation of lymph node metastasis in uterine cancer. World J Radiol. 2012;4:207–14.

    PubMed Central  PubMed  Google Scholar 

  80. Petralia G, Thoeny HC. DW-MRI of the urogenital tract: applications in oncology. Cancer Imaging. 2010;10:S112–23.

    PubMed Central  PubMed  Google Scholar 

  81. Eiber M, et al. Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol. 2010;45:15–23.

    PubMed  Google Scholar 

  82. Beer AJ, et al. Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in (11) C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol. 2011;13:352–61.

    PubMed  Google Scholar 

  83. Budiharto T, et al. Prospective evaluation of 11C-choline positron emission tomography/computed tomography and diffusion-weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases. Eur Urol. 2011;60:125–30.

    PubMed  Google Scholar 

  84. Kaur H, et al. MR imaging for preoperative evaluation of primary rectal cancer: practical considerations. Radiographics. 2012;32:389–409.

    PubMed  Google Scholar 

  85. Yasui O, et al. Diffusion-weighted imaging in the detection of lymph node metastasis in colorectal cancer. Tohoku J Exp Med. 2009;218:177–83.

    CAS  PubMed  Google Scholar 

  86. Vandecaveye V, et al. Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for head and neck squamous cell carcinoma. Eur Radiol. 2010;20:1703–14.

    PubMed  Google Scholar 

  87. Hamstra DA, et al. Diffusion magnetic resonance imaging: an imaging treatment response biomarker to chemoradiotherapy in a mouse model of squamous cell cancer of the head and neck. Transl Oncol. 2008;1:187–94.

    PubMed Central  PubMed  Google Scholar 

  88. Kim S, et al. Diffusion weighted magnetic resonance imaging for predicting an detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res. 2009;15:986–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Sauter AW, et al. Source correlation between [(18)F]FDG PET/CT and volume perfusion CT in primary tumours and mediastinal lymph nodes of non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2013;40:677–84.

    CAS  PubMed  Google Scholar 

  90. Trojanowska A, et al. Squamous cell cancer of hypopharynx and larynx - evaluation of metastatic nodal disease based on computed tomography perfusion studies. Eur J Radiol. 2012;81:1034–9.

    CAS  PubMed  Google Scholar 

  91. Liu Y, et al. Accuracy of computed tomography perfusion in assessing metastatic involvement of enlarged axillary lymph nodes in patients with breast cancer. Breast Cancer Res. 2007;9:R40.

    PubMed Central  PubMed  Google Scholar 

  92. Kostakoglu L. PET/CT imaging. In: Som PM, Curtin HD, editors. Head and neck imaging. 5th ed. St. Louis: Mosby; 2011. p. 2825–92.

    Google Scholar 

  93. Zima A, et al. Can pretreatment CT perfusion predict response of advanced squamous cell carcinoma of the upper aerodigestive tract treated with induction chemotherapy? Am J Neurorad. 2007;28:328–34.

    CAS  Google Scholar 

  94. Groves AM, et al. Metabolic-flow relationships in primary breast cancer: feasibility of combined PET/dynamic contrast-enhanced CT. Eur J Nucl Med Mol Imaging. 2009;36:416–21.

    PubMed  Google Scholar 

  95. Miles KA, et al. Blood flow-metabolic relationships are dependent on tumour size in non-small cell lung cancer: a study using quantitative contrast-enhanced computer tomography and positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:22–8.

    CAS  PubMed  Google Scholar 

  96. Veit-Haibach P, et al. Feasibility of integrated CT-liver perfusion in routine FDG-PET/CT. Abdom Imaging. 2010;35:528–36.

    PubMed  Google Scholar 

  97. Bisdas S, et al. Whole-tumor perfusion CT parameters and glucose metabolism measurements in head and neck squamous cell carcinomas: a pilot study using combined positron-emission tomography/CT imaging. Am J Neurorad. 2008;29:1376–81.

    CAS  Google Scholar 

  98. Veit-Haibach P, et al. Combined PET/CT-perfusion in patients with head and neck cancers. Eur Radiol. 2013;23:163–73.

    PubMed  Google Scholar 

  99. Murray AD, et al. Dynamic contrast enhanced MRI of the axilla in women with breast cancer: comparison with pathology of excised nodes. Br J Radiol. 2002;75:220–8.

    CAS  PubMed  Google Scholar 

  100. Abdel-Razek AA, Gaballa G. Role of perfusion magnetic resonance imaging in cervical lymphadenopathy. J Comput Assist Tomogr. 2011;35:21–5.

    PubMed  Google Scholar 

  101. Chawla S, et al. Pretreatment diffusion-weighted and dynamic contrast-enhanced MRI for prediction of local treatment response in squamous cell carcinomas of the head and neck. AJR Am J Roentgenol. 2013;200:35–43.

    PubMed Central  PubMed  Google Scholar 

  102. Jansen JF, et al. Correlation of a priori DCE-MRI and (1) H-MRS data with molecular markers in neck nodal metastases: Initial analysis. Oral Oncol. 2012;48:717–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Jansen JF, et al. Noninvasive assessment of tumor microenvironment using dynamic contrast-enhanced magnetic resonance imaging and 18F-fluoromisonidazole positron emission tomography imaging in neck nodal metastases. Int J Radiat Oncol Biol Phys. 2010;77:1403–10.

    PubMed Central  PubMed  Google Scholar 

  104. Notohamiprodjo M, et al. MR-lymphangiography at 3.0T—a feasibility study. Eur Radiol. 2009;19:2771–8.

    PubMed  Google Scholar 

  105. Pecking AP, et al. Relationship between lymphoscintigraphy and clinical findings in lower limb lymphedema (LO): toward a comprehensive staging. Lymphology. 2008;41:1–10.

    CAS  PubMed  Google Scholar 

  106. Weiss M, et al. Lymphoscintigraphy for non-invasive long term follow-up of functional outcome in patients with autologous lymph vessel transplantation. Nuklearmedizin. 1996;35:236–42.

    CAS  PubMed  Google Scholar 

  107. Lohrmann C, et al. High-resolution MR lymphangiography in patients with primary and secondary lymphedema. AJR Am J Roentgenol. 2006;187:556–61.

    PubMed  Google Scholar 

  108. Lu Q, et al. Chronic lower extremity lymphedema: a comparative study of high-resolution interstitial MR lymphangiography and heavily T2-weighted MRI. Eur J Radiol. 2010;73:365–73.

    PubMed  Google Scholar 

  109. Saksena MA, et al. Lymphotropic nanoparticle enhanced MR imaging (LNMRI) technique for lymph node imaging. Eur J Radiol. 2006;58:367–74.

    PubMed  Google Scholar 

  110. Wu L, et al. Diagnostic performance of USPIO-enhanced MRI for lymph-node metastases in different body regions: A meta-analysis. Eur J Radiol. 2011;80:582–9.

    PubMed  Google Scholar 

  111. Koh DM, et al. Diagnostic accuracy of nodal enhancement pattern of rectal cancer at MRI enhanced with ultrasmall superparamagnetic iron oxide: findings in pathologically matched mesorectal lymph nodes. AJR Am J Roentgenol. 2010;194:W505–13.

    PubMed  Google Scholar 

  112. Kwee TC, et al. Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol. 2010;40:1592–602.

    PubMed Central  PubMed  Google Scholar 

  113. Thoeny HC, et al. Combined ultrasmall superparamagnetic particles of iron oxide–enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol. 2009;55:761–9.

    PubMed  Google Scholar 

  114. Alam F, et al. Accuracy of sonographic elastography in the differential diagnosis of enlarged cervical lymph nodes: comparison with conventional B-mode sonography. AJR Am J Roentgenol. 2008;191:604–10.

    PubMed  Google Scholar 

  115. Taylor K, et al. Ultrasound elastography as an adjuvant to conventional ultrasound in the preoperative assessment of axillary lymph nodes in suspected breast cancer: a pilot study. Clin Radiol. 2011;66:1064–71.

    CAS  PubMed  Google Scholar 

  116. Lyshchik A, et al. Cervical lymph node metastases: diagnosis at sonoelastography initial experience. Radiology. 2007;243:258–67.

    PubMed  Google Scholar 

  117. Yu M, et al. Clinical application of contrast-enhanced ultrasonography in diagnosis of superficial lymphadenopathy. J Ultrasound Med. 2010;29:735–40.

    PubMed  Google Scholar 

  118. Ying M, et al. Accuracy of sonographic vascular features in differentiating causes of cervical lymphadenopathy. Ultrasound Med Biol. 2004;30:441–7.

    PubMed  Google Scholar 

  119. Sever AR, et al. Preoperative needle biopsy of sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasound in patients with breast cancer. AJR Am J Roentgenol. 2012;199:465–70.

    PubMed  Google Scholar 

  120. Castrillon GA, et al. Use of DWI in female pelvis. In: Luna A et al., editors. Diffusion MRI outside the brain. Berlin: Springer; 2012. p. 181–2.

    Google Scholar 

  121. Vilanova JC, et al. DWI of prostate, bladder and retroperitoneum. In: Luna A et al., editors. Diffusion MRI outside the brain. Berlin: Springer; 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodoro Martín Noguerol MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noguerol, T.M., Sánchez, R.S., Barbero, J.P.M., Fernández, A.R., Luna, A. (2014). Functional Imaging in Clinical Use for the Assessment of Lymph Nodes in Oncological Patients. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics