Skip to main content

Functional Oncological Imaging of the Endocrine System

  • Chapter
  • First Online:
Book cover Functional Imaging in Oncology

Abstract

Endocrine tumors are hormonally active benign or malignant neoplasms arising within endocrine organs or from specialized cells of the amine precursor uptake and decarboxylation (APUD) system that are increasing in incidence as a result of sensitive biochemical tests and high-resolution diagnostic imaging. Not unlike tumors of other systems, endocrine neoplasms are heterogenous with variable prognosis characterized by well-differentiated thyroid cancer with very favorable outcome, medullary thyroid cancer and neuroendocrine-type tumors with intermediate outcomes, and anaplastic thyroid, adrenocortical, and Merkel cell cancers with the poorest clinical outcomes. Medical imaging has become a key component in diagnosis and staging of endocrine malignancies; however, even with great advances in computed tomography and magnetic resonance imaging, detection of small primary tumors and metastases continues to be a challenge. Complimentary functional imaging targets tumor cellular processes that actively accumulate radiopharmaceuticals, allowing sensitive and highly specific oncological imaging. Surveillance of endocrine malignancies commonly combines functional imaging with tumor-specific laboratory biomarkers. Furthermore, functional imaging studies can predict efficacy of radionuclide or receptor-based therapies. The last decade has seen an increasing use of combined PET-CT and SPECT-CT scanners designed to create functional and anatomic maps with resultant incremental diagnostic capabilities. These technologies together with the development of novel PET and SPECT radiopharmaceuticals make patient-individualized functional imaging protocols possible, based on the histological grade, degree of differentiation, and genetic profile of their endocrine neoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AADC:

Aromatic amino acid decarboxylase

ACC:

Adrenocortical carcinoma

ACTH:

Adrenocorticotrophic hormone

APUD:

Amine precursor uptake and decarboxylation

ATC:

Anaplastic thyroid cancer

C11-HED:

C11-hydroxyephedrine

C11-HTP:

C11-5-hydroxy-L-tryptophan

C11-MTO:

C11-metomidate

CEA:

Carcino-embryonic antigen

CT:

Computed tomography

Ctn:

Calcitonin

DMSA:

Dimercaptosuccinic acid

DOTA:

1,4,7,10–tetraazacyclododecane–1,4,7,10–tetraacetic acid

DOTATATE:

DOTA-Ty3-octreotide

DOTANOC:

DOTA-NaI-octreotide

F18-FDA:

F18-fluorodopamine

FDG:

F18-fluoro-2-deoxy-D-glucose

F-DOPA:

6-L-F18-fluorodihydroxyphenylalanine

FTC:

Follicular thyroid cancer

GH:

Growth hormone

I-131:

Iodine-131

keV:

Kilo electron volt

LAT1:

Large neutral amino acid transporter

MCC:

Merkel cell carcinoma

MEN:

Multiple endocrine neoplasia

MIBG:

Metaiodobenzylguanidine

MIP:

Maximum intensity projection

MRI:

Magnetic resonance imaging

MTC:

Medullary thyroid cancer

NB:

Neuroblastoma

NETs:

Neuroendocrine tumors

OR:

Odds ratio

PET-CT:

Positron emission tomography-computed tomography

PGL:

Paraganglioma

PHEO:

Pheochromocytoma

PRL:

Prolactin

PTC:

Papillary thyroid cancer

SDHB:

Succinate dehydrogenase-subunit B

SPECT-CT:

Single-photon emission computed tomography-computed tomography

SRS:

Somatostatin receptor scintigraphy

SSTR:

Somatostatin receptors

SUV:

Standardized uptake value

Tc99m:

Metastable-technetium-99

TSH:

Thyroid stimulating hormone

VMAT:

Vesicular monoamine transporter

WDTC:

Well-differentiated thyroid cancer

References

  1. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295:2164–7.

    CAS  PubMed  Google Scholar 

  2. Lyhne D, et al. Rising incidence of Merkel cell carcinoma. J Plast Surg Hand Surg. 2011;45:274–80.

    PubMed  Google Scholar 

  3. Vinik AI, et al. NANETS consensus guidelines for the diagnosis of neuroendocrine tumor. Pancreas. 2010;39:713–34.

    PubMed  Google Scholar 

  4. Chowdhury FU, Scarsbrook AF. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clin Radiol. 2008;63:241–51.

    CAS  PubMed  Google Scholar 

  5. Park HM. 123I: almost a designer radioiodine for thyroid scanning. J Nucl Med. 2002;43:77–8.

    CAS  PubMed  Google Scholar 

  6. Pentlow KS, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med. 1996;37:1557–62.

    CAS  PubMed  Google Scholar 

  7. Caroli P, et al. Non-FDG PET in the practice of oncology. Indian J Cancer. 2010;47:120–5.

    CAS  PubMed  Google Scholar 

  8. Naji M, et al. Endocrine tumors: the evolving role of positron emission tomography in diagnosis and management. J Endocrinol Invest. 2010;33:54–60.

    CAS  PubMed  Google Scholar 

  9. Koopmans KP, et al. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol. 2009;71:199–213.

    PubMed  Google Scholar 

  10. Minn H, et al. 18F-FDOPA: a multiple-target molecule. J Nucl Med. 2009;50:1915–8.

    CAS  PubMed  Google Scholar 

  11. Al-Nahhas A, et al. Gallium-68 PET: a new frontier in receptor cancer imaging. Anticancer Res. 2007;27:4087–94.

    CAS  PubMed  Google Scholar 

  12. Bushnell DL, Baum RP. Standard imaging techniques for neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011;40:153–62, ix.

    CAS  PubMed  Google Scholar 

  13. Shapiro B, et al. Clinical experience with 75Se selenomethylcholesterol adrenal imaging. Clin Endocrinol (Oxf). 1981;15:19–27.

    CAS  Google Scholar 

  14. Bergstrom M, et al. PET with [11C]-metomidate for the visualization of adrenocortical tumors and discrimination from other lesions. Clin Positron Imaging. 1999;2:339.

    PubMed  Google Scholar 

  15. Jemal A, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    PubMed  Google Scholar 

  16. Wong KK, et al. Molecular imaging in the management of thyroid cancer. Q J Nucl Med Mol Imaging. 2011;55:541–59.

    CAS  PubMed  Google Scholar 

  17. McDougall IR, Hay ID. ATA guidelines: do patients with stage I thyroid cancer benefit from (131)I? Thyroid. 2007;17:595–6; author reply 596–7.

    PubMed  Google Scholar 

  18. Schmidt D, et al. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med. 2009;50:18–23.

    PubMed  Google Scholar 

  19. Spanu A, et al. 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med. 2009;50:184–90.

    PubMed  Google Scholar 

  20. Wong KK, et al. Incremental value of diagnostic 131I SPECT/CT fusion imaging in the evaluation of differentiated thyroid carcinoma. AJR Am J Roentgenol. 2008;191:1785–94.

    PubMed  Google Scholar 

  21. Wong KK, et al. Hybrid SPECT-CT and PET-CT imaging of differentiated thyroid carcinoma. Br J Radiol. 2009;82:860–76.

    CAS  PubMed  Google Scholar 

  22. Barwick T, et al. SPECT/CT using Iodine-123 in patients with differentiated thyroid cancer – additional value over whole body planar imaging and SPECT. Eur J Endocrinol. 2010.

    Google Scholar 

  23. Grewal RK, et al. The effect of posttherapy 131I SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med. 2010;51:1361–7.

    CAS  PubMed  Google Scholar 

  24. Van Nostrand D, et al. (124)I positron emission tomography versus (131)I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20:879–83.

    PubMed  Google Scholar 

  25. Phan HT, et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:958–65.

    PubMed Central  PubMed  Google Scholar 

  26. Eschmann SM, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging. 2002;29:760–7.

    CAS  PubMed  Google Scholar 

  27. Joensuu H, Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med. 1987;28:910–4.

    CAS  PubMed  Google Scholar 

  28. Feine U, et al. 18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and 131I. Nuklearmedizin. 1995;34:127–34.

    CAS  PubMed  Google Scholar 

  29. Frilling A, et al. Preoperative diagnostic value of [(18)F] fluorodeoxyglucose positron emission tomography in patients with radioiodine-negative recurrent well-differentiated thyroid carcinoma. Ann Surg. 2001;234:804–11.

    CAS  PubMed  Google Scholar 

  30. Grunwald F, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med. 1999;26:1547–52.

    CAS  PubMed  Google Scholar 

  31. Dong MJ, et al. Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun. 2009;30:639–50.

    PubMed  Google Scholar 

  32. Razfar A, et al. Clinical usefulness of positron emission tomography-computed tomography in recurrent thyroid carcinoma. Arch Otolaryngol Head Neck Surg. 2010;136:120–5.

    PubMed  Google Scholar 

  33. Wang W, et al. Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab. 2000;85:1107–13.

    CAS  PubMed  Google Scholar 

  34. Robbins RJ, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91:498–505.

    CAS  PubMed  Google Scholar 

  35. Cohen MS, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery. 2001;130:941–6.

    CAS  PubMed  Google Scholar 

  36. Shie P, et al. Systematic review: prevalence of malignant incidental thyroid nodules identified on fluorine-18 fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 2009;30:742–8.

    PubMed  Google Scholar 

  37. Katz SC, Shaha A. PET-associated incidental neoplasms of the thyroid. J Am Coll Surg. 2008;207:259–64.

    PubMed  Google Scholar 

  38. Ma C, et al. The role of TSH for 18F-FDG-PET in the diagnosis of recurrence and metastases of differentiated thyroid carcinoma with elevated thyroglobulin and negative scan: a meta-analysis. Eur J Endocrinol. 2010;163:177–83.

    CAS  PubMed  Google Scholar 

  39. Lowe VJ, et al. 18F-FDG PET of patients with Hurthle cell carcinoma. J Nucl Med. 2003;44:1402–6.

    PubMed  Google Scholar 

  40. Pryma DA, et al. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hurthle cell thyroid cancer patients. J Nucl Med. 2006;47:1260–6.

    PubMed  Google Scholar 

  41. Plotkin M, et al. Implication of 2-18fluor-2-deoxyglucose positron emission tomography in the follow-up of Hurthle cell thyroid cancer. Thyroid. 2002;12:155–61.

    PubMed  Google Scholar 

  42. Neff RL, et al. Anaplastic thyroid cancer. Endocrinol Metab Clin North Am. 2008;37:525–38, xi.

    PubMed  Google Scholar 

  43. Bogsrud TV, et al. 18F-FDG PET in the management of patients with anaplastic thyroid carcinoma. Thyroid. 2008;18:713–9.

    CAS  PubMed  Google Scholar 

  44. Poisson T, et al. 18F-fluorodeoxyglucose positron emission tomography and computed tomography in anaplastic thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37:2277–85.

    PubMed  Google Scholar 

  45. Rufini V, et al. Nuclear medicine procedures in the diagnosis and therapy of medullary thyroid carcinoma. Biomed Pharmacother. 2008;62:139–46.

    CAS  PubMed  Google Scholar 

  46. Bozkurt MF, et al. Functional nuclear medicine imaging of medullary thyroid cancer. Nucl Med Commun. 2008;29:934–42.

    PubMed  Google Scholar 

  47. Czepczynski R, et al. Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2007;34:1635–45.

    CAS  PubMed  Google Scholar 

  48. Groussin L, et al. 18F-Fluorodeoxyglucose positron emission tomography for the diagnosis of adrenocortical tumors: a prospective study in 77 operated patients. J Clin Endocrinol Metab. 2009;94:1713–22.

    CAS  PubMed  Google Scholar 

  49. Rubello D, et al. The role of 18F-FDG PET/CT in detecting metastatic deposits of recurrent medullary thyroid carcinoma: a prospective study. Eur J Surg Oncol. 2008;34:581–6.

    CAS  PubMed  Google Scholar 

  50. Wong KK, et al. How has the management of medullary thyroid carcinoma changed with the advent of 18F-FDG and non-18F-FDG PET radiopharmaceuticals. Nucl Med Commun. 2012;33:679–88.

    CAS  PubMed  Google Scholar 

  51. Szakall Jr S, et al. 18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med. 2002;43:66–71.

    PubMed  Google Scholar 

  52. Ong SC, et al. Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med. 2007;48:501–7.

    CAS  PubMed  Google Scholar 

  53. Hoegerle S, et al. 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med. 2001;28:64–71.

    CAS  PubMed  Google Scholar 

  54. Luster M, et al. Clinical value of 18-fluorine-fluorodihydroxyphenylalanine positron emission tomography/computed tomography in the follow-up of medullary thyroid carcinoma. Thyroid. 2010;20:527–33.

    CAS  PubMed  Google Scholar 

  55. Marzola MC, et al. Dual PET/CT with (18)F-DOPA and (18)F-FDG in metastatic medullary thyroid carcinoma and rapidly increasing calcitonin levels: Comparison with conventional imaging. Eur J Surg Oncol. 2010;36:414–21.

    CAS  PubMed  Google Scholar 

  56. Conry BG, et al. Comparison of (68)Ga-DOTATATE and (18)F-fluorodeoxyglucose PET/CT in the detection of recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2010;37:49–57.

    CAS  PubMed  Google Scholar 

  57. Cook MI, et al. An unusual ectopic location of a parathyroid carcinoma arising within the thyroid gland. J Clin Endocrinol Metab. 2012;97:1829–33.

    CAS  PubMed  Google Scholar 

  58. Evangelista L, et al. FDG-PET/CT and parathyroid carcinoma: review of literature and illustrative case series. World J Clin Oncol. 2011;2:348–54.

    PubMed Central  PubMed  Google Scholar 

  59. Gardner CJ, et al. Localization of metastatic parathyroid carcinoma by 18F FDG PET scanning. J Clin Endocrinol Metab. 2010;95:4844–5.

    CAS  PubMed  Google Scholar 

  60. De Herder WW, Lamberts SW. Imaging of pituitary tumours. Baillieres Clin Endocrinol Metab. 1995;9:367–89.

    PubMed  Google Scholar 

  61. Ahmed M, et al. ACTH-producing pituitary cancer: experience at the King Faisal Specialist Hospital & Research Centre. Pituitary. 2000;3:105–12.

    CAS  PubMed  Google Scholar 

  62. Ilkhchoui Y, et al. FDG-PET/CT findings of a metastatic pituitary tumor. Cancer Imaging. 2010;10:114–6.

    PubMed Central  PubMed  Google Scholar 

  63. Jeong SY, et al. Incidental pituitary uptake on whole-body 18F-FDG PET/CT: a multicentre study. Eur J Nucl Med Mol Imaging. 2010;37:2334–43.

    PubMed  Google Scholar 

  64. Hyun SH, et al. Incidental focal 18F-FDG uptake in the pituitary gland: clinical significance and differential diagnostic criteria. J Nucl Med. 2011;52:547–50.

    PubMed  Google Scholar 

  65. Bergstrom M, et al. Differentiation of pituitary adenoma and meningioma: visualization with positron emission tomography and [11C]-L-deprenyl. Neurosurgery. 1992;30:855–61.

    CAS  PubMed  Google Scholar 

  66. Moraes AB, et al. Utility of [(18)F] fluoro-2-deoxy-D-glucose positron emission tomography in the localization of ectopic ACTH-secreting tumors. Pituitary. 2009;12:380–3.

    PubMed  Google Scholar 

  67. Xu H, et al. The role of integrated (18)F-FDG PET/CT in identification of ectopic ACTH secretion tumors. Endocrine. 2009;36:385–91.

    CAS  PubMed  Google Scholar 

  68. Alzahrani AS, et al. The diagnostic value of fused positron emission tomography/computed tomography in the localization of adrenocorticotropin-secreting pituitary adenoma in Cushing’s disease. Pituitary. 2009;12:309–14.

    CAS  PubMed  Google Scholar 

  69. Roman S. Adrenocortical carcinoma. Curr Opin Oncol. 2006;18:36–42.

    PubMed  Google Scholar 

  70. Becherer A, et al. FDG-PET in adrenocortical carcinoma. Cancer Biother Radiopharm. 2001;16:289–95.

    CAS  PubMed  Google Scholar 

  71. Mackie GC, et al. Use of [18F]fluorodeoxyglucose positron emission tomography in evaluating locally recurrent and metastatic adrenocortical carcinoma. J Clin Endocrinol Metab. 2006;91:2665–71.

    CAS  PubMed  Google Scholar 

  72. Leboulleux S, et al. Diagnostic and prognostic value of 18-fluorodeoxyglucose positron emission tomography in adrenocortical carcinoma: a prospective comparison with computed tomography. J Clin Endocrinol Metab. 2006;91:920–5.

    CAS  PubMed  Google Scholar 

  73. Khan TS, et al. 11C-metomidate PET imaging of adrenocortical cancer. Eur J Nucl Med Mol Imaging. 2003;30:403–10.

    PubMed  Google Scholar 

  74. Kloos RT, et al. Incidentally discovered adrenal masses. Endocr Rev. 1995;16:460–84.

    CAS  PubMed  Google Scholar 

  75. Blake MA, et al. Adrenal lesions: characterization with fused PET/CT image in patients with proved or suspected malignancy – initial experience. Radiology. 2006;238:970–7.

    PubMed  Google Scholar 

  76. Boland GW, et al. Indeterminate adrenal mass in patients with cancer: evaluation at PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology. 1995;194:131–4.

    CAS  PubMed  Google Scholar 

  77. Brady MJ, et al. Adrenal nodules at FDG PET/CT in patients known to have or suspected of having lung cancer: a proposal for an efficient diagnostic algorithm. Radiology. 2009;250:523–30.

    PubMed  Google Scholar 

  78. Tessonnier L, et al. Does 18F-FDG PET/CT add diagnostic accuracy in incidentally identified non-secreting adrenal tumours? Eur J Nucl Med Mol Imaging. 2008;35:2018–25.

    CAS  PubMed  Google Scholar 

  79. Wong KK, et al. Evaluation of incidentally discovered adrenal masses with PET and PET/CT. Eur J Radiol. 2012;81:441–50.

    PubMed  Google Scholar 

  80. Wong KK, et al. Role of positron emission tomography/computed tomography in adrenal and neuroendocrine tumors: fluorodeoxyglucose and nonfluorodeoxyglucose tracers. Nucl Med Commun. 2011;32:764–81.

    PubMed  Google Scholar 

  81. Bagheri B, et al. Characterization of the normal adrenal gland with 18F-FDG PET/CT. J Nucl Med. 2004;45:1340–3.

    PubMed  Google Scholar 

  82. Choyke PL. ACR Appropriateness Criteria on incidentally discovered adrenal mass. J Am Coll Radiol. 2006;3:498–504.

    PubMed  Google Scholar 

  83. Wong KK, et al. Contemporary nuclear medicine imaging of neuroendocrine tumours. Clin Radiol. 2012.

    Google Scholar 

  84. Krausz Y, et al. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours. Clin Endocrinol (Oxf). 2003;59:565–73.

    Google Scholar 

  85. Gabriel M, et al. Image fusion analysis of (99m)Tc-HYNIC-Tyr(3)-octreotide SPECT and diagnostic CT using an immobilisation device with external markers in patients with endocrine tumours. Eur J Nucl Med Mol Imaging. 2005;32:1440–51.

    PubMed  Google Scholar 

  86. Wong KK, et al. Incremental value of 111-in pentetreotide SPECT/CT fusion imaging of neuroendocrine tumors. Acad Radiol. 2010;17:291–7.

    PubMed  Google Scholar 

  87. Apostolova I, et al. SPECT/CT stabilizes the interpretation of somatostatin receptor scintigraphy findings: a retrospective analysis of inter-rater agreement. Ann Nucl Med. 2010;24:477–83.

    CAS  PubMed  Google Scholar 

  88. Wong KK, et al. Comparison of single time-point [111-In] pentetreotide SPECT/CT with dual time-point imaging of neuroendocrine tumors. Clin Nucl Med. 2011;36:25–31.

    PubMed  Google Scholar 

  89. Adams S, et al. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med. 1998;25:79–83.

    CAS  PubMed  Google Scholar 

  90. Binderup T, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51:704–12.

    PubMed  Google Scholar 

  91. Binderup T, et al. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16:978–85.

    CAS  PubMed  Google Scholar 

  92. Schiesser M, et al. Value of combined 6-[18F]fluorodihydroxyphenylalanine PET/CT for imaging of neuroendocrine tumours. Br J Surg. 2010;97:691–7.

    CAS  PubMed  Google Scholar 

  93. Koopmans KP, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol. 2008;26:1489–95.

    PubMed  Google Scholar 

  94. Ambrosini V, et al. 68Ga-DOTA-NOC: a new PET tracer for evaluating patients with bronchial carcinoid. Nucl Med Commun. 2009;30:281–6.

    PubMed  Google Scholar 

  95. Krausz Y, et al. Ga-68 DOTA-NOC uptake in the pancreas: pathological and physiological patterns. Clin Nucl Med. 2012;37:57–62.

    PubMed  Google Scholar 

  96. Kumar R, et al. Role of (68)Ga-DOTATOC PET-CT in the diagnosis and staging of pancreatic neuroendocrine tumours. Eur Radiol. 2011;21:2408–16.

    PubMed  Google Scholar 

  97. Ambrosini V, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431–8.

    CAS  PubMed  Google Scholar 

  98. Haug A, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36:765–70.

    CAS  PubMed  Google Scholar 

  99. Campana D, et al. Standardized uptake values of (68)Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med. 2010;51:353–9.

    PubMed  Google Scholar 

  100. Koukouraki S, et al. Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging. 2006;33:460–6.

    CAS  PubMed  Google Scholar 

  101. Ilias I, Pacak K. A clinical overview of pheochromocytomas/paragangliomas and carcinoid tumors. Nucl Med Biol. 2008;35:S27–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Pacak K, et al. Functional imaging of endocrine tumors: role of positron emission tomography. Endocr Rev. 2004;25:568–80.

    PubMed  Google Scholar 

  103. Havekes B, et al. Detection and treatment of pheochromocytomas and paragangliomas: current standing of MIBG scintigraphy and future role of PET imaging. Q J Nucl Med Mol Imaging. 2008;52:419–29.

    CAS  PubMed  Google Scholar 

  104. Rozovsky K, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190:1085–90.

    PubMed  Google Scholar 

  105. Meyer-Rochow GY, et al. The utility of metaiodobenzylguanidine single photon emission computed tomography/computed tomography (MIBG SPECT/CT) for the diagnosis of pheochromocytoma. Ann Surg Oncol. 2010;17:392–400.

    PubMed  Google Scholar 

  106. Muros MA, et al. 111In-pentetreotide scintigraphy is superior to 123I-MIBG scintigraphy in the diagnosis and location of chemodectoma. Nucl Med Commun. 1998;19:735–42.

    CAS  PubMed  Google Scholar 

  107. Shulkin BL, et al. Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology. 1999;212:35–41.

    CAS  PubMed  Google Scholar 

  108. Taieb D, et al. 18F-FDG avidity of pheochromocytomas and paragangliomas: a new molecular imaging signature? J Nucl Med. 2009;50:711–7.

    CAS  PubMed  Google Scholar 

  109. Imani F, et al. 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med. 2009;50:513–9.

    PubMed  Google Scholar 

  110. Taieb D, et al. The role of 18F-FDOPA and 18F-FDG-PET in the management of malignant and multifocal phaeochromocytomas. Clin Endocrinol (Oxf). 2008;69:580–6.

    CAS  Google Scholar 

  111. Ilias I, et al. Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Clin Endocrinol Metab. 2003;88:4083–7.

    CAS  PubMed  Google Scholar 

  112. Shulkin BL, et al. PET scanning with hydroxyephedrine: an approach to the localization of pheochromocytoma. J Nucl Med. 1992;33:1125–31.

    CAS  PubMed  Google Scholar 

  113. Kroiss A, et al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr 3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging. 2011;38:865–73.

    CAS  PubMed  Google Scholar 

  114. Howman-Giles R, et al. Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2007;37:286–302.

    PubMed  Google Scholar 

  115. Jacobson AF, et al. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab. 2010;95:2596–606.

    CAS  PubMed  Google Scholar 

  116. Kushner BH, et al. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol. 2001;19:3397–405.

    CAS  PubMed  Google Scholar 

  117. Mc Dowell H, et al. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2009;52:552.

    PubMed  Google Scholar 

  118. Melzer HI, et al. (1)(2)(3)I-MIBG scintigraphy/SPECT versus (1)(8)F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38:1648–58.

    PubMed  Google Scholar 

  119. Sharp SE, et al. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50:1237–43.

    PubMed  Google Scholar 

  120. Piccardo A, et al. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging. 2012;39:57–71.

    CAS  PubMed  Google Scholar 

  121. Shulkin BL, et al. PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med. 1996;37:16–21.

    CAS  PubMed  Google Scholar 

  122. Gains JE, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med. 2011;52:1041–7.

    PubMed  Google Scholar 

  123. Concannon R, et al. The impact of (18)F-FDG PET-CT scanning for staging and management of Merkel cell carcinoma: results from Westmead Hospital, Sydney, Australia. J Am Acad Dermatol. 2010;62:76–84.

    PubMed  Google Scholar 

  124. Peloschek P, et al. Diagnostic imaging in Merkel cell carcinoma: lessons to learn from 16 cases with correlation of sonography, CT, MRI and PET. Eur J Radiol. 2010;73:317–23.

    PubMed  Google Scholar 

  125. Lu Y, et al. Comparison of 18F-FDG PET/CT and 111In pentetreotide scan for detection of Merkel cell carcinoma. Clin Nucl Med. 2012;37:759–62.

    PubMed  Google Scholar 

  126. Belhocine T, et al. Clinical added-value of 18FDG PET in neuroendocrine-Merkel cell carcinoma. Oncol Rep. 2006;16:347–52.

    PubMed  Google Scholar 

  127. Siva S, et al. 18F-FDG PET Provides High-Impact and Powerful Prognostic Stratification in the Staging of Merkel Cell Carcinoma: A 15-Year Institutional Experience. J Nucl Med 2013;54:1223–1229.

    Google Scholar 

  128. Schmidt MC, et al. 68Ga-DotaTATE PET-CT followed by Peptide Receptor Radiotherapy in combination with capecitabine in two patients with Merkel Cell Carcinoma. Int J Clin Exp Med. 2012;5:363–366.

    PubMed Central  PubMed  Google Scholar 

  129. Wong KK, et al. Nuclear Medicine Imaging of Endocrine Neoplasms. Nucl Med Commun. 2014;35:1–19.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Kit Wong MBBS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wong, K.K., Kandathil, A., Rubello, D., Gross, M.D. (2014). Functional Oncological Imaging of the Endocrine System. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics