Skip to main content

Pancreatic Adenocarcinoma and Other Pancreatic Malignancies

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Pancreatic adenocarcinoma is a highly lethal disease, mainly due to late diagnosis. Imaging is essential to correctly stage pancreatic adenocarcinoma and define resectable tumors. CT and MRI are more commonly used to detect, characterize, and stage pancreatic carcinoma based on morphological features and enhancement patterns. With the advent of new molecular targeted therapies, there is a growing interest in the imaging assessment of early response to therapy. Therefore, there is growing interest in exploring the capabilities of new functional imaging techniques in the assessment of pancreatic cancer. In this manner, 18FDG PET-CT has been mainly used for initial M-staging, treatment planning with radiation therapy, and the early evaluation of treatment response to chemotherapy and radiotherapy. Diffusion-weighted imaging has shown high sensitivity and specificity for pancreatic cancer detection. Moreover, diffusion-weighted imaging is also able to accurately differentiate pancreatic carcinoma from benign lesions and has been proposed for prediction of treatment response. Pancreatic carcinoma shows high permeability and reduced blood flow in DCE-MRI, CT perfusion, and CEUS. Vascular characteristics of pancreatic carcinoma studies by these imaging techniques may have a role in characterization of pancreatic lesion, therapy monitoring, and prediction of response to treatment. In addition, functional imaging techniques have also been used to differentiate nonneoplastic cystic lesions from neoplastic cysts and in the case of neuroendocrine tumors for detection, characterization, distant staging, recurrence depiction after treatment, and treatment selection for possible radionuclide-based treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

AUC60 :

Initial area under the concentration curve in 60

CEUS:

Contrast-enhanced ultrasound

C peak :

Peak tissue gadolinium concentration

CT:

Computed tomography

D:

Tissue diffusivity

DCE-MRI:

Dynamic contrast-enhanced-MRI

DOTANOC:

68Ga-DOTA-NaI-octreotide

DWI:

Diffusion-weighted imaging

ERCP:

Endoscopic retrograde cholangiopancreatography

EUS:

Endoscopic ultrasound

f :

Perfusion fraction

18FDG:

18-Fluorodeoxyglucose

IPMNs:

Intraductal papillary mucinous neoplasms

IVIM:

Intravoxel incoherent motion

K trans :

Volume transfer coefficient

Kep:

Rate constant

MCNs:

Mucinous cystic neoplasms

MRI:

Magnetic resonance imaging

M-staging:

Metastatic staging

NEC:

Neuroendocrine carcinoma

NETs:

Neuroendocrine tumors

N-staging:

Nodal staging

OctreoScan:

111In-labelled octreotide

PET:

Positron emission tomography

RCC:

Renal cell carcinoma

SMI:

Somatostatin receptor imaging

SUVmax :

Maximum standardized uptake value

THRIVE:

T1-weighted high-resolution isotropic volume excitation

TIC:

Time-intensity curve

T-staging:

Local staging

US:

Ultrasound

v e :

Volume of distribution

References

  1. Cancer Statistics Presentation. 2009. Available from: http://www.cancer.org/acs/groups/content/@nho/documents/document/cancerstatistic2009slidesrevpp.ppt.

  2. Burris 3rd H, Rocha-Lima C. New therapeutic directions for advanced pancreatic cancer: targeting the epidermal growth factor and vascular endothelial growth factor pathways. Oncologist. 2008;13:289–98.

    Article  CAS  PubMed  Google Scholar 

  3. Conlon KC, Aremu MA. Pancreas cancer: anatomy, staging systems, and techniques. In: Kelsen DP, Daly JM, Kern SE, Levin B, Tepper JE, et al., editors. Principles and practice of gastrointestinal oncology. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 2008. p. 1008.

    Google Scholar 

  4. Verweij J, et al. Cancer clinical trial outcomes: any progress in tumour-size assessment? Eur J Cancer. 2009;45:225–7.

    Article  PubMed  Google Scholar 

  5. Dibble EH, et al. PET/CT of cancer patients: part 1, pancreatic neoplasms. AJR Am J Roentgenol. 2012;199:952–67.

    Article  PubMed  Google Scholar 

  6. Wang Y, et al. Diffusion-weighted MR imaging of solid and cystic lesions of the pancreas. Radiographics. 2011;31:E47–64.

    Article  PubMed  Google Scholar 

  7. Kim JH, et al. Solid pancreatic lesions: characterization by using timing bolus dynamic contrast-enhanced MR imaging assessment–a preliminary study. Radiology. 2013;266:185–96.

    Article  PubMed  Google Scholar 

  8. Tamm EP, et al. Imaging of pancreatic ductal adenocarcinoma: state of the art. World J Radiol. 2013;5:98–105.

    Article  PubMed Central  PubMed  Google Scholar 

  9. NCCN Guidelines Version 2. 2012 Panel Members Pancreatic Adenocarcinoma. Philadelphia: Lippincott Williams and Wilkins; 2011. Available from: http://www.onko.szote.u-szeged.hu/intranet/attachments/article/87/pancreatic.pdf.

  10. Kim JH, et al. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology. 2010;257:87–96.

    Article  PubMed  Google Scholar 

  11. Morana G, et al. Staging cancer of the pancreas. Cancer Imaging. 2010;10 Spec no A:S137–41.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson PT, Outwater EK. Pancreatic carcinoma versus chronic pancreatitis: dynamic MR Imaging. Radiology. 2009;212:213–8.

    Article  Google Scholar 

  13. Shrikhande SV, et al. Multimodality imaging of pancreatic ductal adenocarcinoma: a review of the literature. HPB (Oxford). 2012;14:658–68.

    Article  Google Scholar 

  14. Wolff RA, et al. Current approaches and future strategies for pancreatic carcinoma. Invest New Drugs. 2000;18:43–56.

    Article  CAS  PubMed  Google Scholar 

  15. Lee JK, et al. Prediction of vascular involvement and resectability by multidetector-row CT versus MR imaging with MR angiography in patients who underwent surgery for resection of pancreatic ductal adenocarcinoma. Eur J Radiol. 2010;73:310–6.

    Article  PubMed  Google Scholar 

  16. Valls C, et al. Dual-phase helical CT of pancreatic adenocarcinoma: assessment of resectability before surgery. AJR Am J Roentgenol. 2002;178:821–6.

    Article  PubMed  Google Scholar 

  17. Lebedis C, et al. Use of magnetic resonance imaging contrast agents in the liver and biliary tract. Magn Reson Imaging Clin N Am. 2012;20:715–37.

    Article  PubMed  Google Scholar 

  18. Holzapfel K, et al. Comparison of diffusion-weighted MR imaging and multidetector-row CT in the detection of liver metastases in patients operated for pancreatic cancer. Abdom Imaging. 2011;36:179–84.

    Article  PubMed  Google Scholar 

  19. Motosugi U, et al. Detection of pancreatic carcinoma and liver metastases with gadoxetic acid-enhanced MR imaging: comparison with contrast-enhanced multi-detector row CT. Radiology. 2011;260:446–53.

    Article  PubMed  Google Scholar 

  20. Contreras CM, et al. Staging laparoscopy enhances the detection of occult metastases in patients with pancreatic adenocarcinoma. J Surg Oncol. 2009;100:663–9.

    Article  PubMed  Google Scholar 

  21. Pisters PW, et al. Laparoscopy in the staging of pancreatic cancer. Br J Surg. 2001;88:325–37.

    Article  CAS  PubMed  Google Scholar 

  22. van Kouwen MC, et al. FDG-PET is able to detect pancreatic carcinoma in chronic pancreatitis. Eur J Nucl Med Mol Imaging. 2005;32:399–404.

    Article  PubMed  Google Scholar 

  23. Kamisawa T, et al. FDGPET/ CT findings of autoimmune pancreatitis. Hepatogastroenterology. 2010;57:447–50.

    PubMed  Google Scholar 

  24. Tang S, et al. Usefulness of 18F-FDG, combined FDG-PET/CT and EUS in diagnosing primary pancreatic carcinoma: a meta-analysis. Eur J Radiol. 2011;78:142–50.

    Article  PubMed  Google Scholar 

  25. Low G, et al. Multimodality imaging of neoplastic and nonneoplastic solid lesions of the pancreas. Radiographics. 2011;31:993–1015.

    Article  PubMed  Google Scholar 

  26. Delbeke D, Martin WH. PET and PET/CT for pancreatic malignancies. Surg Oncol Clin N Am. 2010;19:235–54.

    Article  PubMed  Google Scholar 

  27. Diederichs CG, et al. Values and limitations of 18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas. 2000;20:109–16.

    Article  CAS  PubMed  Google Scholar 

  28. Frohlich A, et al. Detection of liver metastases from pancreatic cancer using FDG PET. J Nucl Med. 1999;40:250–5.

    CAS  PubMed  Google Scholar 

  29. Topkan E, et al. Predictive value of metabolic 18FDG-PET response on outcomes in patients with locally advanced pancreatic carcinoma treated with definitive concurrent chemoradiotherapy. BMC Gastroenterol. 2011;11:123.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Delbeke D, et al. Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma. J Nucl Med. 1999;40:1784–91.

    CAS  PubMed  Google Scholar 

  31. Topkan E, et al. Comparison of CT and PET-CT based planning of radiotherapy in locally advanced pancreatic carcinoma. J Exp Clin Cancer Res. 2008;27:41–8.

    Article  PubMed  Google Scholar 

  32. Maisey NR, et al. FDG-PET in the prediction of survival of patients with cancer of the pancreas: a pilot study. Br J Cancer. 2000;83:287–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rose DM, et al. 18Fluorodeoxyglucose-positron emission tomography in the management of patients with suspected pancreatic cancer. Ann Surg. 1999;229:729–37.

    Article  CAS  PubMed  Google Scholar 

  34. Schellenberg D, et al. 18Fluorodeoxyglucose PET is prognostic of progression free and overall survival in locally advanced pancreas cancer treated with stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77:1420–5.

    Article  PubMed  Google Scholar 

  35. Cameron K, et al. Recurrent pancreatic carcinoma and cholangiocarcinoma: 18F-fluorodeoxyglucose positron emission tomography/ computed tomography (PET/CT). Abdom Imaging. 2011;36:463–71.

    Article  PubMed  Google Scholar 

  36. Padhani AR, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Matsuki M, et al. Diffusion-weighed MR imaging of pancreatic carcinoma. Abdom Imaging. 2007;32:481–3.

    Article  CAS  PubMed  Google Scholar 

  38. Muraoka N, et al. Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations. J Magn Reson Imaging. 2008;27:1302–8.

    Article  PubMed  Google Scholar 

  39. Fukukura Y, et al. Pancreatic adenocarcinoma: variability of diffusion-weighted MR imaging findings. Radiology. 2012;263:732–40.

    Article  PubMed  Google Scholar 

  40. Rosenkrantz AB, et al. Pancreatic cancer: lack of association between apparent diffusion coefficient values and adverse pathological features. Clin Radiol. 2013;68:e191–7.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, et al. Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade. J Magn Reson Imaging. 2011;33:136–42.

    Article  CAS  PubMed  Google Scholar 

  42. Wu LM, et al. Diagnostic value of diffusion-weighted magnetic resonance imaging compared with fluorodeoxyglucose positron emission tomography/computed tomography for pancreatic malignancy: a meta-analysis using a hierarchical regression model. J Gastroenterol Hepatol. 2012;27:1027–35.

    Article  PubMed  Google Scholar 

  43. Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    PubMed  Google Scholar 

  44. Lemke A, et al. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol. 2009;44:769–75.

    Article  PubMed  Google Scholar 

  45. Klauss M, et al. Fibrosis and pancreatic lesions: counterintuitive behavior of the diffusion imaging-derived structural diffusion coefficient d. Invest Radiol. 2013;48:129–33.

    Article  PubMed  Google Scholar 

  46. Wu LM, et al. Value of diffusion-weighted imaging for the discrimination of pancreatic lesions: a meta-analysis. Eur J Gastroenterol Hepatol. 2012;24:134–42.

    Article  PubMed  Google Scholar 

  47. Fattahi R, et al. Pancreatic diffusion-weighted imaging (DWI): comparison between mass forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas. J Magn Reson Imaging. 2009;29:350–6.

    Article  PubMed  Google Scholar 

  48. Wiggermann P, et al. Apparent diffusion coefficient measurements of the pancreas, pancreas carcinoma, and mass-forming focal pancreatitis. Acta Radiol. 2012;53:135–9.

    Article  PubMed  Google Scholar 

  49. Huang WC, et al. Differentiation between pancreatic carcinoma and mass-forming chronic pancreatitis: usefulness of high b value diffusion-weighted imaging. J Dig Dis. 2011;12:401–8.

    Article  PubMed  Google Scholar 

  50. Klauss M, et al. Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest Radiol. 2011;46:57–63.

    Article  PubMed  Google Scholar 

  51. Kamisawa T, et al. Differentiation of autoimmune pancreatitis from pancreatic cancer by diffusion-weighted MRI. Am J Gastroenterol. 2010;105:1870–5.

    Article  PubMed  Google Scholar 

  52. Muhi A, et al. Mass-forming autoimmune pancreatitis and pancreatic carcinoma: differential diagnosis on the basis of computed tomography and magnetic resonance cholangiopancreatography, and diffusion-weighted imaging findings. J Magn Reson Imaging. 2012;35:827–36.

    Article  PubMed  Google Scholar 

  53. Takuma K, et al. Strategy to differentiate autoimmune pancreatitis from pancreas cancer. World J Gastroenterol. 2012;18:1015–20.

    Article  PubMed  Google Scholar 

  54. Bains LJ, et al. Therapy response with diffusion MRI: an update. Cancer Imaging. 2012;12:395–402.

    Article  PubMed  Google Scholar 

  55. Niwa T, et al. Advanced pancreatic cancer: the use of the apparent diffusion coefficient to predict response to chemotherapy. Br J Radiol. 2009;82:28–34.

    Article  CAS  PubMed  Google Scholar 

  56. Delrue L, et al. Tissue perfusion in pathologies of the pancreas: assessment using 128-slice computed tomography. Abdom Imaging. 2012;37:595–601.

    Article  CAS  PubMed  Google Scholar 

  57. Bali M, et al. Tumoral and non tumoral pancreas: correlation between quantitative dynamic contrast enhanced MR imaging and histopathologic Parameters. Radiology. 2011;261:456–66.

    Article  PubMed  Google Scholar 

  58. Hyun Kim J, et al. Solid pancreatic lesions: characterization by using timing bolus dynamic contrast-enhanced MR imaging assessment—a preliminary study. Radiology. 2013;266:185–96.

    Article  Google Scholar 

  59. Zamboni GA, et al. Dynamic MDCT of the pancreas: is time-density curve morphology useful for the differential diagnosis of solid lesions? A preliminary report. Eur J Radiol. 2012;81:e381–5.

    Article  PubMed  Google Scholar 

  60. D’Onofrio M, et al. Mass-forming pancreatitis: value of contrast-enhanced ultrasonography. World J Gastroenterol. 2006;12:4181–4.

    PubMed  Google Scholar 

  61. D’Onofrio M, et al. Perfusion CT can predict tumoral grading of pancreatic adenocarcinoma. Eur J Radiol. 2013;82:227–33.

    Article  PubMed  Google Scholar 

  62. D’Onofrio M, et al. Resectable pancreatic adenocarcinoma: is the enhancement pattern at contrast-enhanced ultrasonography a pre-operative prognostic factor? Ultrasound Med Biol. 2009;35:1929–37.

    Article  PubMed  Google Scholar 

  63. Klauss M, et al. Computed tomography perfusion analysis of pancreatic carcinoma. Eur J Radiol. 2013;82:208–14.

    Article  CAS  PubMed  Google Scholar 

  64. Park MS, et al. Perfusion CT: noninvasive surrogate marker for stratification of pancreatic cancer response to concurrent chemo- and radiation therapy. Radiology. 2009;250:110–7.

    Article  PubMed  Google Scholar 

  65. Akisik MF, et al. Pancreatic cancer: utility of dynamic contrast-enhanced MR imaging in assessment of antiangiogenic therapy. Radiology. 2010;256:441–9.

    Article  PubMed  Google Scholar 

  66. Karatzas T, et al. Management of cystic and solid pancreatic incidentalomas: a review analysis. J BUON. 2013;18:17–24.

    CAS  PubMed  Google Scholar 

  67. Sahani DV, et al. Diagnosis and management of cystic pancreatic lesions. AJR Am J Roentgenol. 2013;200:343–54.

    Article  PubMed  Google Scholar 

  68. Tomimaru Y, et al. Utility of 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography in differential diagnosis of benign and malignant intraductal papillary-mucinous neoplasm of the pancreas. Oncol Rep. 2010;24:613–20.

    PubMed  Google Scholar 

  69. Hong HS, et al. The utility of F-18 FDG PET/CT in the evaluation of pancreatic intraductal papillary mucinous neoplasm. Clin Nucl Med. 2010;35:776–9.

    Article  PubMed  Google Scholar 

  70. Mottola JC, et al. Diffusion-weighted MRI of focal cystic pancreatic lesions at 3.0-Tesla: preliminary results. Abdom Imaging. 2012;37:110–7.

    Article  PubMed  Google Scholar 

  71. Schraibman V, et al. New trends in diffusion-weighted magnetic resonance imaging as a tool in differentiation of serous cystadenoma and mucinous cystic tumor: a prospective study. Pancreatology. 2011;11:43–51.

    Article  PubMed  Google Scholar 

  72. Fatima Z, et al. Magnetic resonance diffusion-weighted imaging in the characterization of pancreatic mucinous cystic lesions. Clin Radiol. 2011;66:108–11.

    Article  CAS  PubMed  Google Scholar 

  73. Boraschi P, et al. Diffusion-weighted MRI in the characterization of cystic pancreatic lesions: usefulness of ADC values. Magn Reson Imaging. 2010;28:1447–55.

    Article  PubMed  Google Scholar 

  74. Wang Y, et al. Diffusion-weighted MR imaging of solid and cystic lesions of the pancreas. Radiographics. 2011;31:47–64.

    Article  Google Scholar 

  75. Vasile TA, et al. Added value of intravenous contrast-enhanced ultrasound for characterization of cystic pancreatic masses: a prospective study on 37 patients. Med Ultrason. 2012;14:108–14.

    PubMed  Google Scholar 

  76. Xu M, et al. The application value of contrast-enhanced ultrasound in the differential diagnosis of pancreatic solid-cystic lesions. Eur J Radiol. 2012;81:1432–7.

    Article  PubMed  Google Scholar 

  77. Beyer-Enke SA, et al. Contrast enhanced transabdominal ultrasound in the characterisation of pancreatic lesions with cystic appearance. JOP. 2010;11:427–33.

    PubMed  Google Scholar 

  78. Klöppel G, Anlauf M. Pancreatic endocrine tumors. Pathol Case Rev. 2006;11:256–67.

    Article  Google Scholar 

  79. DeLellis RA, et al. Pancreatic endocrine tumours: introduction. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C, editors. World Health Organization classification of tumours: pathology and genetics of tumours of endocrine organs. Lyon: IARC; 2004. p. 177–82.

    Google Scholar 

  80. Lewis RB, et al. From the radiologic pathology archives: esophageal neoplasms: radiologic-pathologic correlation. Radiographics. 2013;33:1083–108.

    Article  PubMed  Google Scholar 

  81. Rufini V, et al. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36:228–47.

    Article  PubMed  Google Scholar 

  82. Adams S, et al. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med. 1998;25:79–83.

    Article  CAS  PubMed  Google Scholar 

  83. Kumar R, et al. Role of (68)Ga-DOTATOC PET-CT in the diagnosis and staging of pancreatic neuroendocrine tumours. Eur Radiol. 2011;21:2408–16.

    Article  PubMed  Google Scholar 

  84. Campana D, et al. Standardized uptake values of (68)Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med. 2010;51:353–9.

    Article  PubMed  Google Scholar 

  85. Gouya H, et al. CT, endoscopic sonography, and a combined protocol for preoperative evaluation of pancreatic insulinomas. AJR Am J Roentgenol. 2003;181:987–92.

    Article  PubMed  Google Scholar 

  86. Owen NJ, et al. MRI of pancreatic neuroendocrine tumours. Br J Radiol. 2001;74:968–73.

    CAS  PubMed  Google Scholar 

  87. Thoeni RF, et al. Detection of small, functional islet cell tumors in the pancreas: selection of MR imaging sequences for optimal sensitivity. Radiology. 2000;214:483–90.

    Article  CAS  PubMed  Google Scholar 

  88. Caramella C, et al. Endocrine pancreatic tumors: which are the most useful MRI sequences? Eur Radiol. 2010;20:2618–27.

    Article  CAS  PubMed  Google Scholar 

  89. Herwick S, et al. MRI of islet cell tumors of the pancreas. AJR Am J Roentgenol. 2006;187:W472–80.

    Article  PubMed  Google Scholar 

  90. d’Assignies G, et al. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors. Radiology. 2009;250:407–16.

    Article  PubMed  Google Scholar 

  91. Brenner R, et al. Pancreatic neuroendocrine tumor: added value of fusion of T2-weighted imaging and high b-value diffusion-weighted imaging for tumor detection. Eur J Radiol. 2012;81:e746–9.

    Article  PubMed  Google Scholar 

  92. Schmid-Tannwald C, et al. Comparison of abdominal MRI with diffusion-weighted imaging to 68Ga-DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas. Eur J Nucl Med Mol Imaging. 2013;40:897–907.

    Article  CAS  PubMed  Google Scholar 

  93. Serra C, et al. Contrast-enhanced ultrasound in the differential diagnosis of exocrine versus neuroendocrine pancreatic tumors. Pancreas. 2013;42:871–7.

    Article  CAS  PubMed  Google Scholar 

  94. Dörffel Y, Wermke W. Neuroendocrine tumors: characterization with contrast-enhanced ultrasonography. Ultraschall Med. 2008;29:506–14.

    Article  PubMed  Google Scholar 

  95. Chung EM, et al. Pancreatic tumors in children: radiologic-pathologic correlation. Radiographics. 2006;26:1211–38.

    Article  PubMed  Google Scholar 

  96. Buetow PC, et al. Solid and papillary epithelial neoplasm of the pancreas: imaging-pathologic correlation on 56 cases. Radiology. 1996;199:707–11.

    CAS  PubMed  Google Scholar 

  97. Roldán-Valadez E, et al. Non-resected solid papillary epithelial tumor of the pancreas: 18F-FDG PET/CT evaluation at 5 years after diagnosis. Rev Esp Med Nucl. 2007;26:160–4.

    Article  PubMed  Google Scholar 

  98. Tsitouridis I, et al. Pancreatic metastases: CT and MRI findings. Diagn Interv Radiol. 2010;16:45–51.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Luna MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luna, A., Alcalá-Mata, L., Volpacchio, M., Barbero, J.P.M. (2014). Pancreatic Adenocarcinoma and Other Pancreatic Malignancies. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics