Skip to main content

Other Malignant Lesions of the Liver

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Malignant lesions of the liver, other than hepatocellular carcinoma (HCC) and metastases, are uncommon conditions, whose main one is represented by cholangiocellular carcinoma (CHC). Other rare lesions are vascular tumors (angiosarcoma and epithelioid hemangioendothelioma) and cystic tumors (cystadenoma/cystadenocarcinoma).

Exposure to different risk factors accounts for a variable incidence of the diseases in the different geographic areas, especially for CHC.

Imaging findings are strictly related to the pathological composition of the tumors, whose knowledge is fundamental in order to make a correct diagnosis. Moreover, the different imaging techniques can offer specific information, able to suggest the correct diagnosis.

However, due to the relative rarity of most of these lesions, imaging has been focused most on detection and characterization, especially with functional imaging, limited to characterization, not to therapy monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

AFP:

Alpha-fetoprotein

CA:

Contrast agent

CA 19-9:

Carbohydrate antigen 19-9

CEUS:

Contrast-enhanced ultrasonography

CHC or CCC:

Cholangiocellular carcinoma

CT:

Computerized tomography

DCE:

Dynamic contrast-enhanced

DWI:

Diffusion-weighted imaging

ECC:

Extrahepatic cholangiocellular carcinoma

FDG:

Fluoro-deoxy-glucose

GBCA:

Extracellular gadolinium-based contrast agents

Gd-BOPTA:

Gadobenate dimeglumine

Gd-EOB-DTPA:

Gadoxetic acid

GLUT:

Glucose transporter

HASTE:

Half-Fourier Acquired Single-shot Turbo spin Echo

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HEH:

Hepatic epithelioid hemangioendothelioma

ICC:

Intrahepatic cholangiocellular carcinoma

IV:

Intravenous

LSCM:

Liver-specific contrast media

MIP:

Maximum intensity projection

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

PET-CT:

Integrated positron emission tomography and computerized tomography

PSC:

Primary sclerosing cholangitis

References

  1. Craig JR, et al. Tumors of the liver and intrahepatic bile ducts. In: Anonymous atlas of tumors pathology, 26. Washington, DC: Armed Forced Institute of Pathology; 1989.

    Google Scholar 

  2. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011;54:173–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Bloom CM, et al. Role of US in the detection, characterization, and staging of cholangiocarcinoma. Radiographics. 1999;19:1199–218.

    CAS  PubMed  Google Scholar 

  4. Fernandez MP, Redvanly RD. Primary hepatic malignant neoplasms. Radiol Clin North Am. 1998;36:333–48.

    CAS  PubMed  Google Scholar 

  5. Chen TC, et al. Intraductal papillary neoplasia of the liver associated with hepatolithiasis. Hepatology. 2001;34:651–8.

    CAS  PubMed  Google Scholar 

  6. Hai S, et al. Clinicopathologic characteristics of hepatitis C virus-associated intrahepatic cholangiocarcinoma. Dig Surg. 2005;22:432–9.

    PubMed  Google Scholar 

  7. Nakanuma Y, et al. Pathological spectrum of intrahepatic cholangiocarcinoma arising in non-biliary chronic advanced liver diseases. Pathol Int. 2011;61:298–305.

    CAS  PubMed  Google Scholar 

  8. Tomimatsu M, et al. Hepatitis C virus antibody in patients with primary liver cancer (hepatocellular carcinoma, cholangiocarcinoma, and combined hepatocellular-cholangiocarcinoma) in Japan. Cancer. 1993;72:683–8.

    CAS  PubMed  Google Scholar 

  9. Li M, et al. Hepatitis B virus infection increases the risk of cholangiocarcinoma: a meta-analysis and systematic review. J Gastroenterol Hepatol. 2012;27:1561–8.

    PubMed  Google Scholar 

  10. Klempnauer J, et al. What constitutes long-term survival after surgery for hilar cholangiocarcinoma? Cancer. 1997;79:26–34.

    CAS  PubMed  Google Scholar 

  11. Okuda K, et al. Clinical aspects of intrahepatic bile duct carcinoma including hilar carcinoma: a study of 57 autopsy-proven cases. Cancer. 1977;39:232–46.

    CAS  PubMed  Google Scholar 

  12. Liver Cancer Study Group of Japan. Intrahepatic cholangiocarcinoma, macroscopic typing. In: Okamoto E, editor. Anonymous classification of primary liver cancer. Tokyo: Kanehara; 1997. p. 6–7.

    Google Scholar 

  13. Yamasaki S. Intrahepatic cholangiocarcinoma: macroscopic type and stage classification. J Hepatobiliary Pancreat Surg. 2003;10:288–91.

    PubMed  Google Scholar 

  14. Yamamoto M, et al. Does gross appearance indicate prognosis in intrahepatic cholangiocarcinoma? J Surg Oncol. 1998;69:162–7.

    CAS  PubMed  Google Scholar 

  15. Isaji S, et al. Clinicopathological features and outcome of hepatic resection for intrahepatic cholangiocarcinoma in Japan. J Hepatobiliary Pancreat Surg. 1999;6:108–16.

    CAS  PubMed  Google Scholar 

  16. Sasaki A, et al. Intrahepatic peripheral cholangiocarcinoma: mode of spread and choice of surgical treatment. Br J Surg. 1998;85:1206–9.

    CAS  PubMed  Google Scholar 

  17. Vilgrain V, et al. Intrahepatic cholangiocarcinoma: MRI and pathologic correlation in 14 patients. J Comput Assist Tomogr. 1997;21:59–65.

    CAS  PubMed  Google Scholar 

  18. Maetani Y, et al. MR imaging of intrahepatic cholangiocarcinoma with pathologic correlation. AJR Am J Roentgenol. 2001;176:1499–507.

    CAS  PubMed  Google Scholar 

  19. Ros PR, et al. Intrahepatic cholangiocarcinoma: radiologic-pathologic correlation. Radiology. 1988;167:689–93.

    CAS  PubMed  Google Scholar 

  20. Worawattanakul S, et al. Cholangiocarcinoma: spectrum of appearances on MR images using current techniques. Magn Reson Imaging. 1998;16:993–1003.

    CAS  PubMed  Google Scholar 

  21. Murakami T, et al. Contrast-enhanced MR imaging of intrahepatic cholangiocarcinoma: pathologic correlation study. J Magn Reson Imaging. 1995;5:165–70.

    CAS  PubMed  Google Scholar 

  22. Lee MG, et al. Preoperative evaluation of hilar cholangiocarcinoma with contrast-enhanced three-dimensional fast imaging with steady-state precession magnetic resonance angiography: comparison with intraarterial digital subtraction angiography. World J Surg. 2003;27:278–83.

    PubMed  Google Scholar 

  23. Choi BI, et al. Imaging of intrahepatic and hilar cholangiocarcinoma. Abdom Imaging. 2004;29:548–57.

    CAS  PubMed  Google Scholar 

  24. Quaia E, et al. Characterization of focal liver lesions with contrast-specific US modes and a sulfur hexafluoride-filled microbubble contrast agent: diagnostic performance and confidence. Radiology. 2004;232:420–30.

    PubMed  Google Scholar 

  25. Furuse J, et al. Contrast enhancement patterns of hepatic tumours during the vascular phase using coded harmonic imaging and Levovist to differentiate hepatocellular carcinoma from other focal lesions. Br J Radiol. 2003;76:385–92.

    CAS  PubMed  Google Scholar 

  26. Klein D, et al. Quantitative dynamic contrast-enhanced sonography of hepatic tumors. Eur Radiol. 2004;14:1082–91.

    PubMed  Google Scholar 

  27. von Herbay A, et al. Real-time imaging with the sonographic contrast agent SonoVue: differentiation between benign and malignant hepatic lesions. J Ultrasound Med. 2004;23:1557–68.

    Google Scholar 

  28. Chen LD, et al. Intrahepatic cholangiocarcinoma and hepatocellular carcinoma: differential diagnosis with contrast-enhanced ultrasound. Eur Radiol. 2010;20:743–53.

    CAS  PubMed  Google Scholar 

  29. Zhang Y, et al. Intrahepatic peripheral cholangiocarcinoma: comparison of dynamic CT and dynamic MRI. J Comput Assist Tomogr. 1999;23:670–7.

    CAS  PubMed  Google Scholar 

  30. Chen LD, et al. Enhancement patterns of intrahepatic cholangiocarcinoma: comparison between contrast-enhanced ultrasound and contrast-enhanced CT. Br J Radiol. 2008;81:881–9.

    PubMed  Google Scholar 

  31. D’Onofrio M, et al. Intrahepatic peripheral cholangiocarcinoma (IPCC): comparison between perfusion ultrasound and CT imaging. Radiol Med. 2008;113:76–86.

    PubMed  Google Scholar 

  32. Sainani NI, et al. Cholangiocarcinoma: current and novel imaging techniques. Radiographics. 2008;28:1263–87.

    PubMed  Google Scholar 

  33. Kim SJ, et al. Peripheral mass-forming cholangiocarcinoma in cirrhotic liver. AJR Am J Roentgenol. 2007;189:1428–34.

    PubMed  Google Scholar 

  34. Ariizumi S, et al. Mass-forming intrahepatic cholangiocarcinoma with marked enhancement on arterial-phase computed tomography reflects favorable surgical outcomes. J Surg Oncol. 2011;104:130–9.

    PubMed  Google Scholar 

  35. Kim SA, et al. Intrahepatic mass-forming cholangiocarcinomas: enhancement patterns at multiphasic CT, with special emphasis on arterial enhancement pattern – correlation with clinicopathologic findings. Radiology. 2011;260:148–57.

    PubMed  Google Scholar 

  36. Outwater E, et al. Hepatic colorectal metastases: correlation of MR imaging and pathologic appearance. Radiology. 1991;180:327–32.

    CAS  PubMed  Google Scholar 

  37. Gabata T, et al. Delayed MR imaging of the liver: correlation of delayed enhancement of hepatic tumors and pathologic appearance. Abdom Imaging. 1998;23:309–13.

    CAS  PubMed  Google Scholar 

  38. Rummeny E, et al. Primary liver tumors: diagnosis by MR imaging. AJR Am J Roentgenol. 1989;152:63–72.

    CAS  PubMed  Google Scholar 

  39. Awaya H, et al. Differential diagnosis of hepatic tumors with delayed enhancement at gadolinium-enhanced MRI: a pictorial essay. Clin Imaging. 1998;22:180–7.

    CAS  PubMed  Google Scholar 

  40. Chung YE, et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics. 2009;29:683–700.

    PubMed  Google Scholar 

  41. Loyer EM, et al. Hepatocellular carcinoma and intrahepatic peripheral cholangiocarcinoma: enhancement patterns with quadruple phase helical CT – a comparative study. Radiology. 1999;212:866–75.

    CAS  PubMed  Google Scholar 

  42. Rimola J, et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology. 2009;50:791–8.

    PubMed  Google Scholar 

  43. Morana G, et al. Solid hypervascular liver lesions: accurate identification of true benign lesions on enhanced dynamic and hepatobiliary phase magnetic resonance imaging after gadobenate dimeglumine administration. Invest Radiol. 2011;46:225–39.

    CAS  PubMed  Google Scholar 

  44. Kang Y, et al. Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology. 2012;264:751–60.

    PubMed  Google Scholar 

  45. Doo KW, et al. “Pseudo washout” sign in high-flow hepatic hemangioma on gadoxetic acid contrast-enhanced MRI mimicking hypervascular tumor. AJR Am J Roentgenol. 2009;193:W490–6.

    PubMed  Google Scholar 

  46. Fan ZM, et al. Intrahepatic cholangiocarcinoma: spin-echo and contrast-enhanced dynamic MR imaging. AJR Am J Roentgenol. 1993;161:313–7.

    CAS  PubMed  Google Scholar 

  47. Filippone A, et al. Enhancement of liver parenchyma after injection of hepatocyte-specific MRI contrast media: a comparison of gadoxetic acid and gadobenate dimeglumine. J Magn Reson Imaging. 2010;31:356–64.

    PubMed  Google Scholar 

  48. Chong YS, et al. Differentiating mass-forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid-enhanced MRI. Clin Radiol. 2012;67:766–73.

    CAS  PubMed  Google Scholar 

  49. Yang DM, et al. The detection and discrimination of malignant and benign focal hepatic lesions: T2 weighted vs diffusion-weighted MRI. Br J Radiol. 2011;84:319–26.

    CAS  PubMed  Google Scholar 

  50. Bruegel M, et al. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences. AJR Am J Roentgenol. 2008;191:1421–9.

    PubMed  Google Scholar 

  51. Cui XY, et al. Diffusion-weighted MR imaging for detection of extrahepatic cholangiocarcinoma. Eur J Radiol. 2012;81:2961–5.

    PubMed  Google Scholar 

  52. Kenis C, et al. Diagnosis of liver metastases: can diffusion-weighted imaging (DWI) be used as a stand alone sequence? Eur J Radiol. 2012;81:1016–23.

    PubMed  Google Scholar 

  53. Lowenthal D, et al. Detection and characterisation of focal liver lesions in colorectal carcinoma patients: comparison of diffusion-weighted and Gd-EOB-DTPA enhanced MR imaging. Eur Radiol. 2011;21:832–40.

    CAS  PubMed  Google Scholar 

  54. Shimada K, et al. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases. Eur Radiol. 2010;20:2690–8.

    PubMed  Google Scholar 

  55. Taouli B, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology. 2003;226:71–8.

    PubMed  Google Scholar 

  56. Onur MR, et al. The role of ADC measurement in differential diagnosis of focal hepatic lesions. Eur J Radiol. 2012;81:e171–6.

    PubMed  Google Scholar 

  57. Lowe VJ, et al. Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol. 1998;16:1075–84.

    CAS  PubMed  Google Scholar 

  58. Otsuka H, et al. FDG-PET/CT for cancer management. J Med Invest. 2007;54:195–9.

    PubMed  Google Scholar 

  59. Tsurusaki M, et al. Clinical application of 18F-fluorodeoxyglucose positron emission tomography for assessment and evaluation after therapy for malignant hepatic tumor. J Gastroenterol. 2014;49:46–56.

    Google Scholar 

  60. Roh MS, et al. Diagnostic utility of GLUT1 in the differential diagnosis of liver carcinomas. Hepatogastroenterology. 2004;51:1315–8.

    PubMed  Google Scholar 

  61. Zimmerman RL, et al. Assessment of Glut-1 expression in cholangiocarcinoma, benign biliary lesions and hepatocellular carcinoma. Oncol Rep. 2002;9:689–92.

    CAS  PubMed  Google Scholar 

  62. Fritscher-Ravens A, et al. FDG PET in the diagnosis of hilar cholangiocarcinoma. Nucl Med Commun. 2001;22:1277–85.

    CAS  PubMed  Google Scholar 

  63. Anderson CD, et al. Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg. 2004;8:90–7.

    PubMed  Google Scholar 

  64. Corvera CU, et al. 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J Am Coll Surg. 2008;206:57–65.

    PubMed  Google Scholar 

  65. Kim JY, et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol. 2008;103:1145–51.

    PubMed  Google Scholar 

  66. Kluge R, et al. Positron emission tomography with [(18)F]fluoro-2-deoxy-D-glucose for diagnosis and staging of bile duct cancer. Hepatology. 2001;33:1029–35.

    CAS  PubMed  Google Scholar 

  67. Moon CM, et al. Usefulness of 18F-fluorodeoxyglucose positron emission tomography in differential diagnosis and staging of cholangiocarcinomas. J Gastroenterol Hepatol. 2008;23:759–65.

    PubMed  Google Scholar 

  68. Petrowsky H, et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol. 2006;45:43–50.

    PubMed  Google Scholar 

  69. Kato T, et al. Clinical role of (18)F-FDG PET for initial staging of patients with extrahepatic bile duct cancer. Eur J Nucl Med Mol Imaging. 2002;29:1047–54.

    CAS  PubMed  Google Scholar 

  70. Keiding S, et al. Detection of cholangiocarcinoma in primary sclerosing cholangitis by positron emission tomography. Hepatology. 1998;28:700–6.

    CAS  PubMed  Google Scholar 

  71. Donckier V, et al. F-18] fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation for liver metastases. J Surg Oncol. 2003;84:215–23.

    PubMed  Google Scholar 

  72. Muller D, et al. Is 18F-FDG-PET suitable for therapy monitoring after palliative photodynamic therapy of non-resectable hilar cholangiocarcinoma? Z Gastroenterol. 2005;43:439–43.

    CAS  PubMed  Google Scholar 

  73. Xu J, et al. Intrahepatic cholangiocarcinomas in cirrhosis are hypervascular in comparison with those in normal livers. Liver Int. 2012;32:1156–64.

    PubMed  Google Scholar 

  74. Li R, et al. Dynamic enhancing vascular pattern of intrahepatic peripheral cholangiocarcinoma on contrast-enhanced ultrasound: the influence of chronic hepatitis and cirrhosis. Abdom Imaging. 2013;38:112–9.

    PubMed  Google Scholar 

  75. Nanashima A, et al. Relationship between pattern of tumor enhancement and clinicopathologic characteristics in intrahepatic cholangiocarcinoma. J Surg Oncol. 2008;98:535–9.

    PubMed  Google Scholar 

  76. Vilana R, et al. Intrahepatic peripheral cholangiocarcinoma in cirrhosis patients may display a vascular pattern similar to hepatocellular carcinoma on contrast-enhanced ultrasound. Hepatology. 2010;51:2020–9.

    PubMed  Google Scholar 

  77. Forner A, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology. 2008;47:97–104.

    PubMed  Google Scholar 

  78. Kim YK, et al. Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the detection of hepatocellular carcinoma. Clin Radiol. 2010;65:358–65.

    CAS  PubMed  Google Scholar 

  79. Hanna RF, et al. Cirrhosis-associated hepatocellular nodules: correlation of histopathologic and MR imaging features. Radiographics. 2008;28:747–69.

    PubMed  Google Scholar 

  80. Soyer P, et al. CT of fibrolamellar hepatocellular carcinoma. J Comput Assist Tomogr. 1991;15:533–8.

    CAS  PubMed  Google Scholar 

  81. Yamashita Y, et al. Sclerosing hepatocellular carcinoma: radiologic findings. Abdom Imaging. 1993;18:347–51.

    CAS  PubMed  Google Scholar 

  82. Bohle W, et al. Contrast-enhanced ultrasound (CEUS) for differentiating between hepatocellular and cholangiocellular carcinoma. Ultraschall Med. 2012;33:E191–5.

    CAS  PubMed  Google Scholar 

  83. Li J, et al. Time-intensity-based quantification of vascularity with single-level dynamic contrast-enhanced ultrasonography: a pilot animal study. J Ultrasound Med. 2005;24:975–83.

    PubMed  Google Scholar 

  84. Wilson SR, et al. Enhancement patterns of focal liver masses: discordance between contrast-enhanced sonography and contrast-enhanced CT and MRI. AJR Am J Roentgenol. 2007;189:W7–12.

    PubMed  Google Scholar 

  85. Grazioli L, et al. Hepatocellular carcinoma: correlation between gadobenate dimeglumine-enhanced MRI and pathologic findings. Invest Radiol. 2000;35:25–34.

    CAS  PubMed  Google Scholar 

  86. Manfredi R, et al. Magnetic resonance imaging of cholangiocarcinoma. Semin Liver Dis. 2004;24:155–64.

    PubMed  Google Scholar 

  87. Theise ND, et al. Combined hepatocellular-cholangiocarcinoma. In: Bosman FT, Garneiro F, Hruban RH, Theise ND, editors. WHO classification of tumours of the digestive system. Lyon: IARC Press; 2010. p. 225–7.

    Google Scholar 

  88. Fausto N. Mouse liver tumorigenesis: models, mechanisms, and relevance to human disease. Semin Liver Dis. 1999;19:243–52.

    CAS  PubMed  Google Scholar 

  89. Komuta M, et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology. 2008;47:1544–56.

    CAS  PubMed  Google Scholar 

  90. Roskams TA, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39:1739–45.

    PubMed  Google Scholar 

  91. Sell S. The role of determined stem-cells in the cellular lineage of hepatocellular carcinoma. Int J Dev Biol. 1993;37:189–201.

    CAS  PubMed  Google Scholar 

  92. Roskams TA, et al. Progenitor cells in diseased human liver. Semin Liver Dis. 2003;23:385–96.

    CAS  PubMed  Google Scholar 

  93. Shiota K, et al. Clinicopathologic study on cholangiolocellular carcinoma. Oncol Rep. 2001;8:263–8.

    CAS  PubMed  Google Scholar 

  94. Theise ND, et al. Hepatic ‘stem cell’ malignancies in adults: four cases. Histopathology. 2003;43:263–71.

    CAS  PubMed  Google Scholar 

  95. Goodman ZD, et al. Combined hepatocellular-cholangiocarcinoma. A histologic and immunohistochemical study. Cancer. 1985;55:124–35.

    CAS  PubMed  Google Scholar 

  96. Jarnagin WR, et al. Combined hepatocellular and cholangiocarcinoma: demographic, clinical, and prognostic factors. Cancer. 2002;94:2040–6.

    PubMed  Google Scholar 

  97. Taguchi J, et al. A clinicopathological study on combined hepatocellular and cholangiocarcinoma. J Gastroenterol Hepatol. 1996;11:758–64.

    CAS  PubMed  Google Scholar 

  98. Akiba J, et al. Clinicopathologic analysis of combined hepatocellular-cholangiocarcinoma according to the latest WHO classification. Am J Surg Pathol. 2013;37:496–505.

    PubMed  Google Scholar 

  99. Fukukura Y, et al. Combined hepatocellular and cholangiocarcinoma: correlation between CT findings and clinicopathological features. J Comput Assist Tomogr. 1997;21:52–8.

    CAS  PubMed  Google Scholar 

  100. Kassahun WT, Hauss J. Management of combined hepatocellular and cholangiocarcinoma. Int J Clin Pract. 2008;62:1271–8.

    CAS  PubMed  Google Scholar 

  101. Toh CH, et al. Combined hepatocellular-cholangiocarcinoma: a case report. Int J Clin Pract. 2004;58:1170–3.

    CAS  PubMed  Google Scholar 

  102. Aoki K, et al. Combined hepatocellular carcinoma and cholangiocarcinoma: clinical features and computed tomographic findings. Hepatology. 1993;18:1090–5.

    CAS  PubMed  Google Scholar 

  103. de Campos RO, et al. Combined hepatocellular carcinoma-cholangiocarcinoma: report of MR appearance in eleven patients. J Magn Reson Imaging. 2012;36:1139–47.

    PubMed  Google Scholar 

  104. Hwang J, et al. Differentiating combined hepatocellular and cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma using gadoxetic acid-enhanced MRI. J Magn Reson Imaging. 2012;36:881–9.

    PubMed  Google Scholar 

  105. Kim YK, et al. Comparison of diffuse hepatocellular carcinoma and intrahepatic cholangiocarcinoma using sequentially acquired gadolinium-enhanced and Resovist-enhanced MRI. Eur J Radiol. 2009;70:94–100.

    PubMed  Google Scholar 

  106. Alrenga DP. Primary angiosarcoma of the liver. Review article. Int Surg. 1975;60:198–203.

    CAS  PubMed  Google Scholar 

  107. Buetow PC, et al. Malignant vascular tumors of the liver: radiologic-pathologic correlation. Radiographics. 1994;14:153–66. quiz 167–8.

    CAS  PubMed  Google Scholar 

  108. Ishak KG. Mesenchymal tumor of the liver. In: Okuda K, Peters RL, editors. Hepatocellular carcinoma. New York: Wiley; 1976. p. 247–308.

    Google Scholar 

  109. Locker GY, et al. The clinical features of hepatic angiosarcoma: a report of four cases and a review of the English literature. Medicine (Baltimore). 1979;58:48–64.

    CAS  Google Scholar 

  110. Levy DW, et al. Thorotrast-induced hepatosplenic neoplasia: CT identification. AJR Am J Roentgenol. 1986;146:997–1004.

    CAS  PubMed  Google Scholar 

  111. Silverman PM, et al. CT appearance of abdominal thorotrast deposition and Thorotrast-induced angiosarcoma of the liver. J Comput Assist Tomogr. 1983;7:655–8.

    CAS  PubMed  Google Scholar 

  112. Falk H, et al. Hepatic angiosarcoma associated with androgenic-anabolic steroids. Lancet. 1979;2:1120–3.

    CAS  PubMed  Google Scholar 

  113. Fracanzani AL, et al. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease. Hepatology. 2001;33:647–51.

    CAS  PubMed  Google Scholar 

  114. Timaran CH, et al. Hepatic angiosarcoma: long-term survival after complete surgical removal. Am Surg. 2000;66:1153–7.

    CAS  PubMed  Google Scholar 

  115. Forbes A, et al. Hepatic sarcomas in adults: a review of 25 cases. Gut. 1987;28:668–74.

    CAS  PubMed  Google Scholar 

  116. Drinkovic I, Brkljacic B. Two cases of lethal complications following ultrasound-guided percutaneous fine-needle biopsy of the liver. Cardiovasc Intervent Radiol. 1996;19:360–3.

    CAS  PubMed  Google Scholar 

  117. Koyama T, et al. Primary hepatic angiosarcoma: findings at CT and MR imaging. Radiology. 2002;222:667–73.

    PubMed  Google Scholar 

  118. Kojiro M, et al. Thorium dioxide-related angiosarcoma of the liver. Pathomorphologic study of 29 autopsy cases. Arch Pathol Lab Med. 1985;109:853–7.

    CAS  PubMed  Google Scholar 

  119. Ludwig J, Hoffman HN. Hemangiosarcoma of the liver. Spectrum of morphologic changes and clinical findings. Mayo Clin Proc. 1975;50:255–63.

    CAS  PubMed  Google Scholar 

  120. Wang L, et al. Contrast-enhanced ultrasound study of primary hepatic angiosarcoma: a pitfall of non-enhancement. Eur J Radiol. 2012;81:2054–9.

    PubMed  Google Scholar 

  121. Ohtomo K, et al. MR imaging of malignant mesenchymal tumors of the liver. Gastrointest Radiol. 1992;17:58–62.

    CAS  PubMed  Google Scholar 

  122. Peterson MS, et al. Hepatic angiosarcoma: findings on multiphasic contrast-enhanced helical CT do not mimic hepatic hemangioma. AJR Am J Roentgenol. 2000;175:165–70.

    CAS  PubMed  Google Scholar 

  123. Rademaker J, et al. Hepatic hemangiosarcoma: imaging findings and differential diagnosis. Eur Radiol. 2000;10:129–33.

    CAS  PubMed  Google Scholar 

  124. Thomas LB, et al. Vinyl-chloride-induced liver disease. From idiopathic portal hypertension (Banti’s syndrome) to angiosarcomas. N Engl J Med. 1975;292:17–22.

    CAS  PubMed  Google Scholar 

  125. Bruegel M, et al. Hepatic angiosarcoma: cross-sectional imaging findings in seven patients with emphasis on dynamic contrast-enhanced and diffusion-weighted MRI. Abdom Imaging. 2013;38:745–54.

    PubMed  Google Scholar 

  126. Maeda T, et al. Primary hepatic angiosarcoma on coregistered FDG PET and CT images. AJR Am J Roentgenol. 2007;188:1615–7.

    PubMed  Google Scholar 

  127. Onaya H, Itai Y. MR imaging of hepatocellular carcinoma. Magn Reson Imaging Clin N Am. 2000;8:757–68.

    CAS  PubMed  Google Scholar 

  128. Stevens WR, et al. Mosaic pattern of hepatocellular carcinoma: histologic basis for a characteristic CT appearance. J Comput Assist Tomogr. 1996;20:337–42.

    CAS  PubMed  Google Scholar 

  129. Makhlouf HR, et al. Epithelioid hemangioendothelioma of the liver: a clinicopathologic study of 137 cases. Cancer. 1999;85:562–82.

    CAS  PubMed  Google Scholar 

  130. Miller WJ, et al. Epithelioid hemangioendothelioma of the liver: imaging findings with pathologic correlation. AJR Am J Roentgenol. 1992;159:53–7.

    CAS  PubMed  Google Scholar 

  131. Lyburn ID, et al. Hepatic epithelioid hemangioendothelioma: sonographic, CT, and MR imaging appearances. AJR Am J Roentgenol. 2003;180:1359–64.

    PubMed  Google Scholar 

  132. Radin DR, et al. Hepatic epithelioid hemangioendothelioma. Radiology. 1988;169:145–8.

    CAS  PubMed  Google Scholar 

  133. Bruegel M, et al. Hepatic epithelioid hemangioendothelioma: findings at CT and MRI including preliminary observations at diffusion-weighted echo-planar imaging. Abdom Imaging. 2011;36:415–24.

    PubMed  Google Scholar 

  134. Lin E, Agoff N. Recurrent hepatic epithelioid hemangioendothelioma: detection by FDG PET/CT. Clin Nucl Med. 2007;32:949–51.

    PubMed  Google Scholar 

  135. Nguyen BD. Epithelioid hemangioendothelioma of the liver with F-18 FDG PET imaging. Clin Nucl Med. 2004;29:828–30.

    PubMed  Google Scholar 

  136. Suga K, et al. F-18 FDG PET/CT monitoring of radiation therapeutic effect in hepatic epithelioid hemangioendothelioma. Clin Nucl Med. 2009;34:199–202.

    PubMed  Google Scholar 

  137. Dong A, et al. MRI and FDG PET/CT findings of hepatic epithelioid hemangioendothelioma. Clin Nucl Med. 2013;38:e66–73.

    PubMed  Google Scholar 

  138. Kitapci MT, et al. FDG-PET/CT in the evaluation of epithelioid hemangioendothelioma of the liver: the role of dual-time-point imaging. A case presentation and review of the literature. Ann Nucl Med. 2010;24:549–53.

    PubMed  Google Scholar 

  139. Powers C, et al. Primary liver neoplasms: MR imaging with pathologic correlation. Radiographics. 1994;14:459–82.

    CAS  PubMed  Google Scholar 

  140. Xu HX, et al. Unusual benign focal liver lesions: findings on real-time contrast-enhanced sonography. J Ultrasound Med. 2008;27:243–54.

    PubMed  Google Scholar 

  141. Murphy BJ, et al. The CT appearance of cystic masses of the liver. Radiographics. 1989;9:307–22.

    CAS  PubMed  Google Scholar 

  142. Buetow PC, Midkiff RB. MR imaging of the liver. Primary malignant neoplasms in the adult. Magn Reson Imaging Clin N Am. 1997;5:289–318.

    CAS  PubMed  Google Scholar 

  143. Palacios E, et al. Biliary cystadenoma: ultrasound, CT, and MRI. Gastrointest Radiol. 1990;15:313–6.

    CAS  PubMed  Google Scholar 

  144. Mathieu D, et al. Benign liver tumors. Magn Reson Imaging Clin N Am. 1997;5:255–88.

    CAS  PubMed  Google Scholar 

  145. Lewis KH, Chezmar JL. Hepatic metastases. Magn Reson Imaging Clin N Am. 1997;5:319–30.

    CAS  PubMed  Google Scholar 

  146. Marani SA, et al. Hydatid disease: MR imaging study. Radiology. 1990;175:701–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Morana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morana, G., Zanato, R., Bruno, O. (2014). Other Malignant Lesions of the Liver. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics