Skip to main content

Overview of Functional Imaging Techniques for Liver Malignancies in Current Clinical Practice or in a Very Near Future

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

There are a number of functional imaging techniques which are able to provide information from different characteristics of liver malignancies. Different levels of validation of all of these techniques have been accumulated in recent years. All of them offer quantitative parameters with potential to be used as imaging biomarkers in oncology. Currently, it is necessary to search the insights and biological meanings of the different measured parameters obtained with these techniques to determine their clinical applications. The use of 18FDG PET-CT in the evaluation of hepatic metastases and primary liver malignancies is highly introduced in the clinical setting. MRI has given a step forward from anatomy to function by the development of several functional approaches. The most extended in clinical practice is diffusion-weighted imaging (DWI), which has been proposed as an oncological imaging biomarker of interstitium occupancy and reflects cellular density, cell membrane integrity, presence of macromolecules, fluid viscosity, and even microcapillary perfusion. In addition, MRI allows analyzing tumor metabolism by means of 1H-MR spectroscopy, tumor hypoxia using blood-oxygen-level-dependent (BOLD), and angiogenesis using different approaches with (dynamic contrast-enhanced MRI) and without contrast agent injection (arterial spin labeling and intravoxel incoherent motion analysis of signal diffusion). Moreover, tumor angiogenesis can also be studied with CT perfusion and contrast-enhanced ultrasound (CEUS). Estimation of hepatic function with the injection of hepatobiliary contrast agent (HBCA) and hepatic parenchyma stiffness and elasticity with US and MRI elastography has also shown interesting applications in the evaluation of liver tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18FDG:

F-18-fluoro-deoxy-glucose

ADC:

Apparent diffusion coefficient

ASL:

Arterial spin labeling

AUC:

Area under the curve

BF:

Regional blood flow

BOLD:

Blood-oxygen-level-dependent

BV:

Regional blood volume

CEUS:

Contrast-enhanced ultrasound

CHC:

Cholangiocarcinoma

CNR:

Contrast-to-noise ratio

CRC:

Colorectal carcinoma

CT:

Computed tomography

D :

Tissue diffusivity

D*:

perfusion contribution to signal decay

DCE-MRI:

Dynamic contrast enhanced-MRI

DWI:

Diffusion-weighted imaging

f :

Perfusion fraction

FE:

Extraction fraction

FNH:

Focal nodular hyperplasia

Gd-BOPTA:

Gadobenate dimeglumine

Gd-EOB-DTPA:

Gadolinium-ethoxibenzyl-diethylenetriamine pentaacetic acid

GE:

Gradient echo

HA:

Hepatic adenoma

HBCA:

Hepatobiliary contrast agent

HCC:

Hepatocellular carcinoma

IVIM:

Intravoxel incoherent motion

K ep :

Rate constant

K trans :

Efflux constant

MIP:

Maximum intensity projection

MRI:

Magnetic resonance imaging

OATP:

Organic anion transporting polypeptide

PET:

Positron emission tomography

PRESS:

Point-resolved spectroscopy

PS:

Permeability surface area product

SNR:

Signal to noise ratio

SPIO:

Super paramagnetic iron oxide nano-particles

SS SE EPI:

Single-shot spin-echo echo-planar imaging

STEAM:

Stimulated-echo acquisi-tion mode

STIR:

Short-tau inversion recovery

SUV:

Standard uptake value

TACE:

Transcatheter arterial chemoembolization

THRIVE:

T1-weighted high-resolution isotropic volume examination

TSE:

Turbo spin echo

US:

Ultrasound

V e :

Volume of extravascular extracellular space

Vp:

Plasma volume

References

  1. Sacks A, et al. Value of PET/CT in the management of primary hepatobiliary tumors, part 2. AJR Am J Roentgenol. 2011;197:260–5.

    Google Scholar 

  2. Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    CAS  PubMed  Google Scholar 

  3. Wahl RL, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122–50.

    Google Scholar 

  4. Goh V, et al. Functional imaging of the liver. Semin Ultrasound CT MR. 2013;34:54–65.

    PubMed  Google Scholar 

  5. de Souza DA, et al. Modern imaging evaluation of the liver: emerging MR imaging techniques and indications. Magn Reson Imaging Clin N Am. 2013;21:337–63.

    PubMed  Google Scholar 

  6. Padhani AR, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Khan MA, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol. 2000;32:792–7.

    CAS  PubMed  Google Scholar 

  8. Trojan J, et al. Fluorine-18FDG positron emission tomography for imaging of hepatocellular carcinoma. Am J Gastroenterol. 1999;94:3314–9.

    CAS  PubMed  Google Scholar 

  9. Shiomi S, et al. Usefulness of positron emission tomography with fluorine-18-fluorodeoxiglucose for predicting outcome in patients with hepatocellular carcinoma. Am J Gastroenterol. 2001;96:1877–80.

    CAS  PubMed  Google Scholar 

  10. Miles KA, Willians RE. Warburg revisited: imaging tumor blood flow and metabolism. Cancer Imaging. 2008;25:81–6.

    Google Scholar 

  11. Park JW, et al. A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med. 2008;49:1912–21.

    PubMed  Google Scholar 

  12. Ho CL, et al. Dualtracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med. 2007;48:902–9.

    CAS  PubMed  Google Scholar 

  13. Kong YH, et al. Positron emission tomography with fluorine-18-fluorodeoxyglucose is useful for predicting the prognosis of patients with hepatocellular carcinoma. Korean J Hepatol. 2004;10:279–87.

    PubMed  Google Scholar 

  14. Yoon KT, et al. Role of 18Ffluorodeoxyglucose positron emission tomography in detecting extrahepatic metastasis in pretreatment staging of hepatocellular carcinoma. Oncology. 2007;72:104–10.

    PubMed  Google Scholar 

  15. Sacks A, et al. Value of PET/CT in the management of liver metastases, part 1. AJR Am J Roentgenol. 2011;197:256–9.

    Google Scholar 

  16. Wiering B, et al. Controversies in the management of colorectal liver metastases: role of PET and PET/CT. Dig Surg. 2008;25:413–20.

    PubMed  Google Scholar 

  17. Kinkel K, et al. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology. 2002;224:748–56.

    PubMed  Google Scholar 

  18. Bipat S, et al. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis—meta-analysis. Radiology. 2005;237:123–31.

    PubMed  Google Scholar 

  19. D’Souza MM, et al. Prospective evaluation of CECT and 18F-FDG-PET/CT in detection of hepatic metastases. Nucl Med Commun. 2009;30:117–25.

    PubMed  Google Scholar 

  20. Grassetto G, et al. Additional value of FDG-PET/CT in management of “solitary” liver metastases: preliminary results of a prospective multicenter study. Mol Imaging Biol. 2010;12:139–44.

    PubMed  Google Scholar 

  21. Wiering B, et al. The impact of fluor-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer. 2005;104:2658–70.

    PubMed  Google Scholar 

  22. Kong G, et al. The use of 18F-FDG PET/CT in colorectal liver metastases: comparison with CT and liver MRI. Eur J Nucl Med Mol Imaging. 2008;35:1323–9.

    CAS  PubMed  Google Scholar 

  23. Findlay M, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol. 1996;14:700–8.

    CAS  PubMed  Google Scholar 

  24. Lubezky N, et al. The role and limitations of 18-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) scan and computerized tomography (CT) in restaging patients with hepatic colorectal metastases following neoadjuvant chemotherapy: comparison with operative and pathological findings. J Gastrointest Surg. 2007;11:472–8.

    PubMed Central  PubMed  Google Scholar 

  25. Han A, et al. Clinical value of (18)F-FDG PET/CT in postoperative monitoring for patients with colorectal carcinoma. Cancer Epidemiol. 2011;35:497–500.

    PubMed  Google Scholar 

  26. Veit P, et al. Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol. 2006;16:80–7.

    PubMed  Google Scholar 

  27. Choi J. Imaging of hepatic metastases. Cancer Control. 2006;13:6–12.

    PubMed  Google Scholar 

  28. Rodriguez-Fernández A, et al. Application of modern imaging methods in diagnosis of gallbladder cancer. J Surg Oncol. 2006;93:650–64.

    PubMed  Google Scholar 

  29. Ramos-Font C, et al. Positron tomography with 18F-fluorodeoxyglucose in the preoperative evaluation of gallbladder lesions suspicious of malignancy. Diagnostic utility and clinical impact. Rev Esp Med Nucl. 2011;30:267–75.

    CAS  PubMed  Google Scholar 

  30. Lee YG, Han SW. Diagnostic performance of contrast enhanced CT and 18F-FDG PET/CT in suspicious recurrence of biliary tract cancer after curative resection. BMC Cancer. 2011;11:188.

    PubMed Central  PubMed  Google Scholar 

  31. Corvera CU, et al. 18F-fluorodeoxiglucose positron emission tomography influences management decisions in patients with biliary cancer. J Am Coll Surg. 2008;206:57–65.

    PubMed  Google Scholar 

  32. Fritscher-Ravens A, et al. FDG PET in the diagnosis of hilar cholangiocarcinoma. Nucl Med Commun. 2001;22:1277–85.

    CAS  PubMed  Google Scholar 

  33. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254:47–66.

    PubMed  Google Scholar 

  34. Hussain SM, et al. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study. J Magn Reson Imaging. 2005;21:219–29.

    PubMed  Google Scholar 

  35. Coenegrachts K, et al. Improved focal liver lesion detection: comparison of single-shot diffusion-weighted echoplanar and single-shot T2 weighted turbo spin echo techniques. Br J Radiol. 2007;80:524–31.

    CAS  PubMed  Google Scholar 

  36. Bruegel M, et al. Diagnosis of hepatic metastasis: comparison of respiration triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences. AJR Am J Roentgenol. 2008;191:1421–9.

    PubMed  Google Scholar 

  37. Parikh T, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology. 2008;246:812–22.

    PubMed  Google Scholar 

  38. Zech CJ, et al. Black blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Invest Radiol. 2008;43:261–6.

    PubMed  Google Scholar 

  39. Okada Y, et al. Breath-hold T2-weighted MRI of hepatic tumors: value of echo planar imaging with diffusion-sensitizing gradient. J Comput Assist Tomogr. 1998;22:364–71.

    CAS  PubMed  Google Scholar 

  40. Moteki T, Sekine T. Echo planar MR imaging of the liver: comparison of images with and without motion probing gradients. J Magn Reson Imaging. 2004;19:82–90.

    PubMed  Google Scholar 

  41. Nasu K, et al. Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology. 2006;239:122–30.

    PubMed  Google Scholar 

  42. Koh DM, et al. Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol. 2008;18:903–10.

    CAS  PubMed  Google Scholar 

  43. Koh DM, et al. Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases. Br J Radiol. 2012;85:980–9.

    PubMed  Google Scholar 

  44. Erturk SM, et al. Diffusion-weighted magnetic resonance imaging for characterization of focal liver masses: impact of parallel imaging (SENSE) and b value. J Comput Assist Tomogr. 2008;32:865–71.

    PubMed  Google Scholar 

  45. Bruegel M, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol. 2008;18:477–85.

    PubMed  Google Scholar 

  46. Yamada I, et al. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology. 1999;210:617–23.

    CAS  PubMed  Google Scholar 

  47. Taouli B, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology. 2003;226:71–8.

    PubMed  Google Scholar 

  48. Kim T, et al. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol. 1999;173:393–8.

    CAS  PubMed  Google Scholar 

  49. Namimoto T, et al. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 1997;204:739–44.

    CAS  PubMed  Google Scholar 

  50. Bittencourt LK, et al. Diffusion-weighted magnetic resonance imaging in the upper abdomen: technical issues and clinical applications. Magn Reson Imaging Clin N Am. 2011;19:111–31.

    PubMed  Google Scholar 

  51. An C, et al. Prediction of the histopathological grade of hepatocellular carcinoma using qualitative diffusion-weighted, dynamic, and hepatobiliary phase MRI. Eur Radiol. 2012;22:1701–8.

    PubMed  Google Scholar 

  52. Xu PJ, et al. Added value of breathhold diffusion-weighted MRI in detection of small hepatocellular carcinoma lesions compared with dynamic contrast-enhanced MRI alone using receiver operating characteristic curve analysis. J Magn Reson Imaging. 2009;29:341–9.

    PubMed  Google Scholar 

  53. Xu H, et al. Diffusion-weighted magnetic resonance imaging of focal hepatic nodules in an experimental hepatocellular carcinoma rat model. Acad Radiol. 2007;14:279–86.

    PubMed  Google Scholar 

  54. Muhi A, et al. High-b-value diffusion-weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging. 2009;30:1005–11.

    PubMed  Google Scholar 

  55. Nasu K, et al. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade. Am J Roentgenol. 2009;193:438–44.

    Google Scholar 

  56. Vandecaveye V, et al. Diffusion-weighted MRI provides additional value to conventional dynamic contrast-enhanced MRI for detection of hepatocellular carcinoma. Eur Radiol. 2009;19:2456–66.

    PubMed  Google Scholar 

  57. Kim YK, et al. Hypovascular hypointense nodules on hepatobiliary phase gadoxetic acid-enhanced MR images in patients with cirrhosis: potential of DW imaging in predicting progression to hypervascular HCC. Radiology. 2012;265:104–14.

    PubMed  Google Scholar 

  58. Motosugi U, et al. Distinguishing hypervascular pseudolesions of the liver from hypervascular hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging. Radiology. 2010;256:151–8.

    PubMed  Google Scholar 

  59. Chen CY, et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization: choline levels and MR diffusion constants–initial experience. Radiology. 2006;239:448–56.

    PubMed  Google Scholar 

  60. Chung JC, et al. Diffusion-weighted magnetic resonance imaging to predict response of hepatocellular carcinoma to chemoembolization. World J Gastroenterol. 2010;16:3161–7.

    PubMed  Google Scholar 

  61. Goshima S, et al. Evaluating local hepatocellular carcinoma recurrence post-transcatheter arterial chemoembolization: is diffusion-weighted MRI reliable as an indicator? J Magn Reson Imaging. 2008;27:834–9.

    PubMed  Google Scholar 

  62. Kamel IR, et al. Unresectable hepatocellular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology. 2009;250:466–73.

    PubMed  Google Scholar 

  63. Mannelli L, et al. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol. 2009;193:1044–52.

    PubMed  Google Scholar 

  64. Kubota K, et al. Role of diffusion-weighted imaging in evaluating therapeutic efficacy after transcatheter arterial chemoembolization for hepatocellular carcinoma. Oncol Rep. 2010;24:727–32.

    PubMed  Google Scholar 

  65. Bonekamp S, et al. Hepatocellular carcinoma: response to TACE assessed with semiautomated volumetric and functional analysis of diffusion-weighted and contrast-enhanced MR imaging data. Radiology. 2011;260:752–61.

    PubMed  Google Scholar 

  66. Mannelli L, et al. Serial diffusion-weighted MRI in patients with hepatocellular carcinoma: Prediction and assessment of response to transarterial chemoembolization. Preliminary experience. Eur J Radiol. 2013;82:577–82.

    PubMed  Google Scholar 

  67. Rhee TK, et al. Tumor response after yttrium-90 radioembolization for hepatocellular carcinoma: comparison of diffusion-weighted functional MR imaging with anatomic MR imaging. J Vasc Interv Radiol. 2008;19:1180–6.

    PubMed  Google Scholar 

  68. Schraml C, et al. Diffusion-weighted MRI of advanced hepatocellular carcinoma during sorafenib treatment: initial results. Am J Roentgenol. 2009;193:301–7.

    Google Scholar 

  69. Cui Y, et al. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology. 2008;248:894–900.

    PubMed  Google Scholar 

  70. Koh DM, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol. 2007;188:1001–8.

    PubMed  Google Scholar 

  71. Sahani DV, et al. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue – initial experience. Radiology. 2007;243:736–43.

    PubMed  Google Scholar 

  72. Chen G, et al. Computed tomography perfusion in evaluating the therapeutic effect of transarterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol. 2008;14:5738–43.

    PubMed  Google Scholar 

  73. Jiang T, et al. Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST). Invest Radiol. 2012;47:11–7.

    PubMed  Google Scholar 

  74. Zhu AX, et al. Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma. Oncologist. 2007;13:120–5.

    Google Scholar 

  75. Hirashima Y, et al. Pharmacokinetic parameters from 3-Tesla DCE-MRI as surrogate biomarkers of antitumor effects of bevacizumab plus FOLFIRI in colorectal cancer with liver metastasis. Int J Cancer. 2012;130:2359–65.

    CAS  PubMed  Google Scholar 

  76. Warren HW, et al. Prospective assessment of the hepatic perfusion index in patients with colorectal cancer. Br J Surg. 1998;85:1708–12.

    CAS  PubMed  Google Scholar 

  77. Lee JM, et al. Diagnosis of hepatocellular carcinoma: newer radiological tools. Semin Oncol. 2012;39:399–409.

    PubMed  Google Scholar 

  78. Luciani A, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging – pilot study. Radiology. 2008;249:891–9.

    PubMed  Google Scholar 

  79. Guiu B, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology. 2012;265:96–103.

    PubMed  Google Scholar 

  80. Penner AH, et al. Intravoxel incoherent motion model-based liver lesion characterisation from three b-value diffusion-weighted MRI. Eur Radiol. 2013 (in press).

    Google Scholar 

  81. Yoon JH, et al. Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: Comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. Magn Reson Imaging. 2014;39:276–85.

    Google Scholar 

  82. Koh DM, et al. Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging. Eur Radiol. 2006;16:1898–905.

    CAS  PubMed  Google Scholar 

  83. Andreou A, et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol. 2013;23:428–34.

    CAS  PubMed  Google Scholar 

  84. De Bazelaire C, et al. Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma(1). Acad Radiol. 2005;12:347–57.

    PubMed  Google Scholar 

  85. O’Connor JP, et al. Preliminary study of oxygen-enhanced longitudinal relaxation in MRI: a potential novel biomarker of oxygenation changes in solid tumors. Int J Radiat Oncol Biol Phys. 2009;75:1209–15.

    PubMed  Google Scholar 

  86. Choi JW, et al. Blood oxygen level-dependent MRI for evaluation of early response of liver tumors to chemoembolization: an animal study. Anticancer Res. 2013;33:1887–92.

    CAS  PubMed  Google Scholar 

  87. Jhaveri KS, et al. Blood oxygen level-dependent liver MRI: can it predict microvascular invasion in HCC? J Magn Reson Imaging. 2013;37:692–9.

    PubMed  Google Scholar 

  88. Lebedis C, et al. Use of magnetic resonance imaging contrast agents in the liver and biliary tract. Magn Reson Imaging Clin N Am. 2012;20:715–37.

    PubMed  Google Scholar 

  89. Kitao A, et al. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. Eur Radiol. 2011;21:2056–66.

    PubMed  Google Scholar 

  90. Pastor CM. Gadoxetic acid-enhanced hepatobiliary phase MR imaging: cellular insight. Radiology. 2010;257:589.

    PubMed  Google Scholar 

  91. Cruite I, et al. Gadoxetate disodium-enhanced MRI of the liver: part 2, protocol optimization and lesion appearance in the cirrhotic liver. AJR Am J Roentgenol. 2010;195:29–41.

    PubMed  Google Scholar 

  92. Bolog N, et al. CT and MR imaging of hepatocellular carcinoma. J Gastrointestin Liver Dis. 2011;20:181–9.

    PubMed  Google Scholar 

  93. Goshima S, et al. Gadoxetate disodium-enhanced MR imaging: differentiation between early-enhancing nontumorous lesions and hypervascular hepatocellular carcinomas. Eur J Radiol. 2011;79:e108–12.

    PubMed  Google Scholar 

  94. Onishi H, et al. Hypervascular hepatocellular carcinomas: detection with gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT. Eur Radiol. 2012;22:845–54.

    PubMed  Google Scholar 

  95. Kim TK, et al. Analysis of gadobenate dimeglumine-enhanced MR findings for characterizing small (1-2-cm) hepatic nodules in patients at high risk for hepatocellular carcinoma. Radiology. 2011;259:730–8.

    PubMed  Google Scholar 

  96. Kim SH, et al. Typical and atypical imaging findings of intrahepatic cholangiocarcinoma using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr. 2012;36:704–9.

    PubMed  Google Scholar 

  97. Kang Y, et al. Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology. 2012;264:751–60.

    PubMed  Google Scholar 

  98. Grazioli L, et al. Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumine-enhanced MR imaging: prospective study. Radiology. 2005;236:166–77.

    PubMed  Google Scholar 

  99. Grazioli L, et al. Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology. 2012;262:520–9.

    PubMed  Google Scholar 

  100. Katabathina VS, et al. Genetics and imaging of hepatocellular adenomas: 2011 update. Radiographics. 2011;31:1529–43.

    PubMed  Google Scholar 

  101. Shanbhogue AK, et al. Recent advances in cytogenetics and molecular biology of adult hepatocellular tumors: implications for imaging and management. Radiology. 2011;258:673–93.

    PubMed  Google Scholar 

  102. Gupta RT, et al. Dynamic MR imaging of the biliary system using hepatocyte-specific contrast agents. AJR Am J Roentgenol. 2010;195:405–13.

    PubMed  Google Scholar 

  103. Akpinar E, et al. Initial experience on utility of Gadobenate dimeglumine (Gd-BOPTA) enhanced T1-weighted MR cholangiography in diagnosis of acute cholecystitis. J Magn Reson Imaging. 2009;30:578–85.

    PubMed  Google Scholar 

  104. Krishnan P, et al. Functional evaluation of cystic duct patency with Gd-EOB-DTPA MR imaging: an alternative to hepatobiliary scintigraphy for diagnosis of acute cholecystitis? Abdom Imaging. 2012;37:457–64.

    PubMed  Google Scholar 

  105. Lee NK, et al. Biliary MR imaging with Gd-EOB-DTPA and its clinical applications. Radiographics. 2009;29:1707–24.

    PubMed  Google Scholar 

  106. Marin D, et al. Gadoxetate disodium-enhanced magnetic resonance cholangiography for the noninvasive detection of an active bile leak after laparoscopic cholecystectomy. J Comput Assist Tomogr. 2010;34:213–6.

    PubMed  Google Scholar 

  107. Hoeffel C, et al. Normal and pathologic features of the postoperative biliary tract at 3D MR cholangiopancreatography and MR imaging. Radiographics. 2006;26:1603–20.

    PubMed  Google Scholar 

  108. Hollingworth W, et al. A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol. 2006;27:1404–11.

    CAS  PubMed  Google Scholar 

  109. Kuo YT, et al. In vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scanner. J Magn Reson Imaging. 2004;19:598–604.

    PubMed  Google Scholar 

  110. Bian DJ, et al. Magnetic resonance spectroscopy on hepatocellular carcinoma after transcatheter arterial chemoembolization. Chin J Cancer. 2010;29:198–201.

    PubMed  Google Scholar 

  111. Glaser KJ, et al. Review of MR elastography applications and recent developments. J Magn Reson Imaging 2012;36(4):spcone.

    Google Scholar 

  112. Mariappan YK, et al. Magnetic resonance elastography: a review. Clin Anat. 2010;23:497–511.

    PubMed Central  PubMed  Google Scholar 

  113. Schmeltzer PA, Talwalkar JA. Noninvasive tools to assess hepatic fibrosis: ready for prime time? Gastroenterol Clin North Am. 2011;40:507–21.

    PubMed Central  PubMed  Google Scholar 

  114. Venkatesh SK, et al. MR elastography of liver tumors: preliminary results. AJR Am J Roentgenol. 2008;190:1534–40.

    PubMed Central  PubMed  Google Scholar 

  115. Luna A, et al. DWI of the liver. In: Luna A et al., editors. Diffusion MRI outside the brain. Berlin: Springer; 2012. p. 181–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Luna MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luna, A., Cunha, G.M., Sánchez-Sánchez, R., Rodriguez-Fernández, A. (2014). Overview of Functional Imaging Techniques for Liver Malignancies in Current Clinical Practice or in a Very Near Future. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics