Skip to main content

Colorectal Cancer

  • Chapter
  • First Online:
Book cover Functional Imaging in Oncology

Abstract

Functional and molecular imaging techniques have a growing role in colorectal cancer. These techniques may be useful tools in the process of management of patients with colorectal cancer including diagnosis, prognosis, planning therapy, and assessment of response to treatment. In addition, this chapter will review recent developments in imaging technologies, validation of these newer imaging techniques, evolving roles for these techniques, and challenges for their implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

BF:

Blood flow

BOLD-MRI:

Blood-oxygenation-level-dependent MRI

CRC:

Colorectal cancer

CRT:

Chemoradiotherapy

64Cu-ATSM:

Copper diacetyl-bis-N4-methylthiosemicarbazone

D:

Perfusion-free diffusion

DCE-MRI:

Dynamic contrast-enhanced MRI

DCE-US:

Dynamic contrast-enhanced ultrasound

DWI:

Diffusion-weighted imaging

DW-MRI:

Diffusion-weighted magnetic resonance imaging

EES:

Extravascular-extracellular space

f:

Perfusion fraction

FDG:

18F-2-fluoro-2-deoxy-d-glucose

F-FAZA:

F-fluoroazomycinarabinofuranoside

F-FMISO:

8F-fluroimidazole

FLT:

18F-3-deoxy-3-fluorothymidine

FMI:

Functional and molecular imaging

IVIM:

Intravoxel incoherent motion

K trans :

Transfer constant

LN:

Lymph node

MFMI:

Multiparametric functional-molecular imaging

MRSI:

Magnetic resonance spectroscopic imaging

MTT:

Mean transit time

MVD:

Microvessel density

pCR:

Pathological complete response

PCT:

Perfusion CT

PET:

Positron emission tomography

RC:

Rectal cancer

SUV:

Standardized uptake value

USPIO:

Ultrasmall iron oxide particles

VEGF:

Vascular endothelial growth factor

References

  1. Bipat S, et al. Imaging modalities for the staging of patients with colorectal cancer. Neth J Med. 2012;70:26–34.

    CAS  PubMed  Google Scholar 

  2. Liang TY, et al. Imaging paradigms in assessment of rectal carcinoma: loco-regional and distant staging. Cancer Imaging. 2012;12:290–303.

    Article  PubMed  Google Scholar 

  3. Kosinski L, et al. Shifting concepts in rectal cancer management: a review of contemporary primary rectal cancer treatment strategies. CA Cancer J Clin. 2012;62:173–202.

    Article  PubMed  Google Scholar 

  4. Torkzad MR, et al. Magnetic resonance imaging (MRI) in rectal cancer: a comprehensive review. Insights Imaging. 2010;1:245–67.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA. The hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  6. Kapse N, Goh V. Functional imaging of colorectal cancer: positron emission tomography, magnetic resonance imaging, and computed tomography. Clin Colorectal Cancer. 2009;8:77–87.

    Article  Google Scholar 

  7. Goh V, et al. Functional imaging of colorectal cancer angiogenesis. Lancet Oncol. 2007;8:245–55.

    Article  PubMed  Google Scholar 

  8. Figueiras RG et al. The role of functional imaging in colorectal cancer. AJR Am J Roentgenol. 2010;195:54–66.

    Article  PubMed  Google Scholar 

  9. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  10. Cairns RA, et al. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  PubMed  Google Scholar 

  11. Moreno-Sánchez R, et al. Energy metabolism in tumor cells. FEBS J. 2007;274:1393–418.

    Article  PubMed  Google Scholar 

  12. Herbertson RA, et al. Established, emerging and future roles of PET/CT in the management of colorectal cancer. Clin Radiol. 2009;64:225–37.

    Article  CAS  PubMed  Google Scholar 

  13. Lin M. Molecular imaging using positron emission tomography in colorectal cancer. Discov Med. 2011;11:435–47.

    PubMed  Google Scholar 

  14. Patel S, et al. Positron emission tomography/computed tomographic scans compared to computed tomographic scans for detecting colorectal liver metastases: a systematic review. Ann Surg. 2011;253:666–71.

    Article  PubMed  Google Scholar 

  15. Schmoll HJ, et al. ESMO consensus guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol. 2012;23:2479–516.

    Article  CAS  PubMed  Google Scholar 

  16. Davey K, et al. The impact of 18-fluorodeoxyglucose positron emission tomography-computed tomography on the staging and management of primary rectal cancer. Dis Colon Rectum. 2008;51:997–1003.

    Article  CAS  PubMed  Google Scholar 

  17. Bipat S, et al. Rectal cancer: local staging and assessment of lymph node involvement with endoluminal US, CT, and MR imaging – a meta-analysis. Radiology. 2004;232:773–83.

    Article  PubMed  Google Scholar 

  18. Llamas-Elvira J, et al. Fluorine-18 fluorodeoxyglucose PET in the preoperative staging of colorectal cancer. Eur J Nucl Med Mol Imaging. 2007;34:859–67.

    Article  CAS  PubMed  Google Scholar 

  19. Guerra L, et al. Change in glucose metabolism measured by 18F-FDG PET/CT as a predictor of histopathologic response to neoadjuvant treatment in rectal cancer. Abdom Imaging. 2011;36:38–45.

    Article  PubMed  Google Scholar 

  20. Capirci C, et al. Sequential FDGPET/CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemoradiation therapy. Eur J Nucl Med Mol Imaging. 2007;34:1583–93.

    Article  CAS  PubMed  Google Scholar 

  21. Kalff V, et al. Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med. 2006;47:14–22.

    PubMed  Google Scholar 

  22. Chen LB, et al. (18)F-DG PET/CT in detection of recurrence and metastasis of colorectal cancer. World J Gastroenterol. 2011;13:5025–9.

    Google Scholar 

  23. Bassi MC, et al. FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer. Int J Radiat Oncol Biol Phys. 2008;70:1423–6.

    Article  PubMed  Google Scholar 

  24. Huebner RH, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med. 2000;41:1177–89.

    CAS  PubMed  Google Scholar 

  25. Deleau C, et al. Clinical impact of fluorodeoxyglucose-positron emission tomography scan/computed tomography in comparison with computed tomography on the detection of colorectal cancer recurrence. Eur J Gastroenterol Hepatol. 2011;23:275–81.

    Article  PubMed  Google Scholar 

  26. Kim MJ, et al. Detection of rectal cancer and response to concurrent chemoradiotherapy by proton magnetic resonance spectroscopy. Magn Reson Imaging. 2012;30:848–53.

    Article  PubMed  Google Scholar 

  27. Dzik-Jurasz AS, et al. Human rectal adenocarcinoma: demonstration of 1H-MR spectra in vivo at 1.5 T. Magn Reson Med. 2002;47:809–11.

    Article  CAS  PubMed  Google Scholar 

  28. Francis DL, et al. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut. 2003;52:1602–6.

    Article  CAS  PubMed  Google Scholar 

  29. Roels S, et al. Biological image guided radiotherapy in rectal cancer: is there a role for FMISO or FLT, next to FDG? Acta Oncol. 2008;47:1237–48.

    Article  CAS  PubMed  Google Scholar 

  30. Muijs CT, et al. 18F-FLT-PET for detection of rectal cancer. Radiother Oncol. 2011;98:357–9.

    Article  PubMed  Google Scholar 

  31. Wieder H, et al. PET imaging with [18F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging. 2007;34:878–83.

    Article  CAS  PubMed  Google Scholar 

  32. Padhani AR, et al. Diffusion- weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Ichikawa T, et al. High-B-value diffusion weighted MRI in colorectal cancer. AJR Am J Roentgenol. 2006;187:181–4.

    Article  PubMed  Google Scholar 

  34. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254:47–66.

    Article  PubMed  Google Scholar 

  35. Mizukami Y, et al. Diffusion-weighted magnetic resonance imaging for detecting lymph node metastasis of rectal cancer. World J Surg. 2011;35:895–9.

    Article  PubMed  Google Scholar 

  36. Lambregts DM, et al. Whole-body diffusion-weighted magnetic resonance imaging: current evidence in oncology and potential role in colorectal cancer staging. Eur J Cancer. 2011;47:2107–16.

    Article  PubMed  Google Scholar 

  37. Curvo-Semedo L, et al. Diffusion-weighted MRI in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J Magn Reson Imaging. 2012;35:1365–71.

    Article  PubMed  Google Scholar 

  38. Dzik-Jurasz A, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet. 2002;360:307–8.

    Article  PubMed  Google Scholar 

  39. Jung SH, et al. Predicting response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer: diffusion-weighted 3 Tesla MR imaging. J Magn Reson Imaging. 2012;35:110–6.

    Article  PubMed  Google Scholar 

  40. Barbaro B, et al. Diffusion-weighted magnetic resonance imaging in monitoring rectal cancer response to neoadjuvant chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2012;83:594–9.

    PubMed  Google Scholar 

  41. Park MJ, et al. Locally advanced rectal cancer: added value of diffusion-weighted MR imaging for predicting tumor clearance of the mesorectal fascia after neoadjuvant chemotherapy and radiation therapy. Radiology. 2011;260:771–80.

    Article  PubMed  Google Scholar 

  42. Padhani AR, Koh DM. Diffusion MR imaging for monitoring of treatment response. Magn Reson Imaging Clin N Am. 2011;19:181–209.

    Article  PubMed  Google Scholar 

  43. Hein PA, et al. Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur J Radiol. 2003;45:214–22.

    Article  PubMed  Google Scholar 

  44. Lambregts DM, et al. Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol. 2011;18:2224–31.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Curvo-Semedo L, et al. Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy–conventional MR volumetry versus diffusion-weighted MR imaging. Radiology. 2011;260:734–43.

    Article  PubMed  Google Scholar 

  46. Kim SH, et al. Apparent diffusion coefficient for evaluating tumour response to neoadjuvant chemoradiation therapy for locally advanced rectal cancer. Eur Radiol. 2011;21:987–95.

    Article  PubMed  Google Scholar 

  47. Engin G, et al. Can diffusion-weighted MRI determine complete responders after neoadjuvant chemoradiation for locally advanced rectal cancer? Diagn Interv Radiol. 2012;18:574–81.

    PubMed  Google Scholar 

  48. Song I, et al. Value of diffusion-weighted imaging in the detection of viable tumour after neoadjuvant chemoradiation therapy in patients with locally advanced rectal cancer: comparison with T2 weighted and PET/CT imaging. Br J Radiol. 2012;85:577–86.

    Article  CAS  PubMed  Google Scholar 

  49. Lambregts DM, et al. Value of ADC measurements for nodal staging after chemoradiation in locally advanced rectal cancer-a per lesion validation study. Eur Radiol. 2011;21:265–73.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Colosio A, et al. Local colorectal cancer recurrence: pelvic MRI evaluation. Abdom Imaging. 2013;38:72–81.

    Article  CAS  PubMed  Google Scholar 

  51. Lambregts DM, et al. Value of MRI and diffusion-weighted MRI for the diagnosis of locally recurrent rectal cancer. Eur Radiol. 2011;21:1250–8.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Koh DM, et al. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol. 2011;196:1351–61.

    Article  PubMed  Google Scholar 

  53. Bäuerle T, et al. Diffusion-weighted imaging in rectal carcinoma patients without and after chemoradiotherapy: a comparative study with histology. Eur J Radiol. 2013;82:444–52.

    Article  PubMed  Google Scholar 

  54. Turkbey B, et al. Imaging of tumor angiogenesis: functional or targeted? AJR Am J Roentgenol. 2009;193:304–13.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Kierkels RG, et al. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in rectal cancer. Int J Radiat Oncol Biol Phys. 2010;77:400–8.

    Article  PubMed  Google Scholar 

  56. García-Figueiras R, et al. CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol. 2013;200:8–19.

    Article  PubMed  Google Scholar 

  57. Dighe S, et al. Perfusion CT to assess angiogenesis in colon cancer: technical limitations and practical challenges. Br J Radiol. 2012;85:e814–25.

    Article  CAS  PubMed  Google Scholar 

  58. Sahani DV, et al. Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology. 2005;234:785–92.

    Article  PubMed  Google Scholar 

  59. Feng ST, et al. Evaluation of angiogenesis in colorectal carcinoma with multidetector-row CT multislice perfusion imaging. Eur J Radiol. 2010;75:191–6.

    Article  PubMed  Google Scholar 

  60. Khan S, et al. Perfusion CT assessment of the colon and rectum: feasibility of quantification of bowel wall perfusion and vascularization. Eur J Radiol. 2012;81:821–4.

    Article  PubMed  Google Scholar 

  61. Goh V, et al. Differentiation between diverticulitis and colorectal cancer: quantitative CT perfusion measurements versus morphologic criteria – initial experience. Radiology. 2007;242:456–62.

    Article  PubMed  Google Scholar 

  62. Goh V, et al. Can perfusion CT assessment of primary colorectal adenocarcinoma blood flow at staging predict for subsequent metastatic disease? A pilot study. Eur Radiol. 2009;19:79–89.

    Article  PubMed  Google Scholar 

  63. Hayano K, et al. Quantitative measurement of blood flow using perfusion CT for assessing clinicopathologic features and prognosis in patients with rectal cancer. Dis Colon Rectum. 2009;52:1624–9.

    Article  PubMed  Google Scholar 

  64. Bellomi M, et al. CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma: initial experience. Radiology. 2007;244:486–93.

    Article  PubMed  Google Scholar 

  65. Curvo-Semedo L, et al. Usefulness of perfusion CT to assess response to neoadjuvant combined chemoradiotherapy in patients with locally advanced rectal cancer. Acad Radiol. 2012;19:203–13.

    Article  PubMed  Google Scholar 

  66. Anzidei M, et al. Liver metastases from colorectal cancer treated with conventional and antiangiogenetic chemotherapy: evaluation with liver computed tomography perfusion and magnetic resonance diffusion-weighted imaging. J Comput Assist Tomogr. 2011;35:690–6.

    Article  PubMed  Google Scholar 

  67. Janssen MH, et al. Tumor perfusion increases during hypofractionated short-course radiotherapy in rectal cancer: sequential perfusion-CT findings. Radiother Oncol. 2010;94:156–60.

    Article  PubMed  Google Scholar 

  68. Zhang XM, et al. 3D dynamic contrast-enhanced MRI of rectal carcinoma at 3T: correlation with microvascular density and vascular endothelial growth factor markers of tumor angiogenesis. J Magn Reson Imaging. 2008;27:1309–16.

    Article  PubMed  Google Scholar 

  69. Morgan B, et al. Dynamic contrast enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol. 2003;21:3955–64.

    Article  CAS  PubMed  Google Scholar 

  70. Mross K, et al. DCE-MRI assessment of the effect of vandetanib on tumor vasculature in patients with advanced colorectal cancer and liver metastases: a randomized phase I study. J Angiogenes Res. 2009;1:5.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Lim JS, et al. Perfusion MRI for the prediction of treatment response after preoperative chemoradiotherapy in locally advanced rectal cancer. Eur Radiol. 2012;22:1693–700.

    Article  PubMed  Google Scholar 

  72. George ML, et al. Non- invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg. 2001;88:1628–36.

    Article  CAS  PubMed  Google Scholar 

  73. Hirashima Y, et al. Pharmacokinetic parameters from 3-Tesla DCE-MRI as surrogate biomarkers of antitumor effects of Bevacizumab plus FOLFIRI in colorectal cancer with liver metastasis. Int J Cancer. 2012;130:2359–65.

    Article  CAS  PubMed  Google Scholar 

  74. Onji K, et al. Microvascular structure and perfusion imaging of colon cancer by means of contrast-enhanced ultrasonography. Abdom Imaging. 2012;37:297–303.

    Article  PubMed  Google Scholar 

  75. Meijerink MR, et al. Perfusion CT and US of colorectal cancer liver metastases: a correlative study of two dynamic imaging modalities. Ultrasound Med Biol. 2010;36:1626–36.

    Article  PubMed  Google Scholar 

  76. Wu L, et al. Diagnostic performance of USPIO-enhanced MRI for lymph-node metastases in different body regions: a meta-analysis. Eur J Radiol. 2011;80:582–9.

    Article  PubMed  Google Scholar 

  77. Froehlich JM, et al. Does quantification of USPIO uptake-related signal loss allow differentiation of benign and malignant normal-sized pelvic lymph nodes? Contrast Media Mol Imaging. 2012;7:346–55.

    Article  CAS  PubMed  Google Scholar 

  78. Lahaye MJ, et al. USPIO-enhanced MR imaging for nodal staging in patients with primary rectal cancer: predictive criteria. Radiology. 2008;246:804–11.

    Article  PubMed  Google Scholar 

  79. Thoeny HC, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol. 2009;55:761–9.

    Article  PubMed  Google Scholar 

  80. Padhani AR, et al. Imaging oxygenation of human tumours. Eur Radiol. 2007;17:861–72.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Mees G, et al. Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging. 2009;36:1674–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. O’Connor JP, et al. Preliminary study of oxygen-enhanced longitudinal relaxation in MRI: a potential novel biomarker of oxygenation changes in solid tumors. Int J Radiat Oncol Biol Phys. 2009;75:1209–15.

    Article  PubMed  Google Scholar 

  83. Havelund BM, et al. Tumour hypoxia imaging with 18F-fluoroazomycinarabinofuranoside PET/CT in patients with locally advanced rectal cancer. Nucl Med Commun. 2013;34:155–61.

    Article  CAS  PubMed  Google Scholar 

  84. Yang SY, et al. Apoptosis and colorectal cancer: implications for therapy. Trends Mol Med. 2009;15:225–33.

    Article  CAS  PubMed  Google Scholar 

  85. Keen HG, et al. Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol. 2005;32:395–402.

    Article  CAS  PubMed  Google Scholar 

  86. Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy. Radiology. 2010;256:348–64.

    Article  PubMed  Google Scholar 

  87. Ono K, et al. Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging. 2009;29:336–40.

    Article  PubMed  Google Scholar 

  88. Gu J, et al. Combined use of 18F-FDG PET/CT, DW-MRI, and DCE-MRI in treatment response for preoperative chemoradiation therapy in locally invasive rectal cancers. Clin Nucl Med. 2013;38:e226–9.

    Article  PubMed  Google Scholar 

  89. Goh V, et al. The flow-metabolic phenotype of primary colorectal cancer: assessment by integrated 18F-FDG PET/perfusion CT with histopathologic correlation. J Nucl Med. 2012;53:687–92.

    Article  CAS  PubMed  Google Scholar 

  90. Gu J, et al. Dynamic contrast-enhanced MRI of primary rectal cancer: quantitative correlation with positron emission tomography/computed tomography. J Magn Reson Imaging. 2011;33:340–7.

    Article  PubMed  Google Scholar 

  91. Gu J, et al. Quantitative assessment of diffusion-weighted MR imaging in patients with primary rectal cancer: correlation with FDG-PET/CT. Mol Imaging Biol. 2011;13:1020–8.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Miles KA, et al. Demonstrating intertumoural differences in vascular-metabolic phenotype with dynamic contrast-enhanced CT-PET. Int J Mol Imaging. 2011;2011:679473.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Van Laarhoven HWM, et al. Hypoxia in relation to vasculature and proliferation in liver metastases in patients with colorectal cancer. Int J Radiat Oncol Biol Phys. 2006;64:473–82.

    Article  PubMed  Google Scholar 

  94. Yong TW, et al. Sensitivity of PET/MR images in liver metastases from colorectal carcinoma. Hell J Nucl Med. 2011;14:264–8.

    PubMed  Google Scholar 

  95. De Bruyne S, et al. Value of DCE-MRI and FDG-PET/CT in the prediction of response to preoperative chemotherapy with Bevacizumab for colorectal liver metastases. Br J Cancer. 2012;106:1926–33.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Willett CG, et al. Direct evidence that the VEGF-specific antibody Bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Figueiras RG, et al. Novel oncologic drugs: what they do and how they affect images. Radiographics. 2011;31:2059–91.

    Article  PubMed  Google Scholar 

  98. Goh V, et al. Integrated (18)F-FDG PET/CT and perfusion CT of primary colorectal cancer: effect of inter- and intraobserver agreement on metabolic-vascular parameters. AJR Am J Roentgenol. 2012;199:1003–9.

    Article  PubMed  Google Scholar 

  99. Ng F, et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology. 2013;266:177–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto García-Figueiras MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García-Figueiras, R., Baleato-González, S., Gómez-Caamaño, A., Alvarez-Castro, A., Paredes-Cotoré, J. (2014). Colorectal Cancer. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics