Skip to main content

Functional Magnetic Resonance Techniques in CNS Tumors

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Central nervous system (CNS) tumors are relatively rare, and their diagnosis, therapeutic management, and follow-up represent challenges. However, the various available imaging methods no longer provide exclusively descriptive anatomical information. Advanced imaging techniques now allow for the assessment of functional parameters, thus maximizing the potential of these techniques for diagnosis and treatment assessment. In the present chapter, we discuss the role of these techniques in the diagnosis and treatment planning of CNS neoplasms. In addition, we describe the main features of intra-axial primary and secondary neoplasms as well as their differentiation from nonneoplastic, space-occupying lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[18F] FDG:

2-[18F] fluoro-2-deoxy-D-glucose

[18F] FLT:

[18F]fluorothymidine

[18F]FAZA:

[18F]F-fluoroazomycin arabinoside

[18F]FMISO:

[18F]fluoromisonidazole

ACRIN:

American College of Radiology Imaging Network

ADC:

Apparent diffusion coefficient

ADCmin:

Minimum apparent diffusion coefficient

AIDS:

Acquired immunodeficiency syndrome

ASL:

Arterial spin labeling

AT/RT:

Atypical teratoid rhabdoid tumor

BBB:

Blood-brain barrier

BOLD:

Blood oxygen level-dependent

CBTRUS:

Central Brain Tumor Registry of the United States

Cho:

Choline

CNS:

Central nervous system

Cr:

Creatine

CSF:

Cerebrospinal fluid

CT:

Computerized tomography

DCE MR imaging:

Dynamic contrast-enhanced MRI

DNA:

Deoxyribonucleic acid

DSC MR imaging:

Dynamic susceptibility contrast-enhanced MR imaging

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

FET:

O-(2-[18F]fluoroethyl)-l-tyrosine

FLAIR:

Fluid-attenuated inversion recovery

FSE:

Fast spin-echo

Gd:

Gadolinium

Glx:

Glutamine/glutamate

Ki-67:

Index of mitotic activity

Lac:

Lactate

Lip:

Lipids

MET:

[11C]methionine

MinIP:

Minimum-intensity projection

MRS:

Proton magnetic resonance spectroscopy

MS:

Multiple sclerosis

NAA:

N-acetylaspartate

PET:

Positron emission tomography

PNET:

Primitive neuroectodermal

PWI:

Perfusion-weighted imaging

rCBV:

Relative cerebral blood volume

ROIs:

Regions of interest

rTBV:

Relative tumor blood volume

RTOG:

Radiation Therapy Oncology Group

SWI:

Susceptibility-weighted imaging

T1-WI:

T1-weighted imaging

TDL:

Tumefactive demyelinating lesion

TE:

Echo time

TSE:

Turbo spin-echo

VEGF:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  1. CBTRUS – Fact sheet. cbtrus.org at: http://www.cbtrus.org/factsheet/factsheet.html.

  2. CBTRUS – Reports and tables. cbtrus.org at: http://www.cbtrus.org/reports/reports.html.

  3. Siegel R, et al. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    PubMed  Google Scholar 

  4. McCarthy BJ, et al. Consensus conference on cancer registration of brain and central nervous system tumors. Neuro Oncol. 2005;7:196–201.

    PubMed Central  PubMed  Google Scholar 

  5. Law M, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989–98.

    PubMed  Google Scholar 

  6. Watanabe M, et al. Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology. 1992;34:463–9.

    CAS  PubMed  Google Scholar 

  7. MacDonald DR. Low-grade gliomas, mixed gliomas, and oligodendrogliomas. Semin Oncol. 1994;21:236–48.

    CAS  PubMed  Google Scholar 

  8. Chamberlain MC, et al. Absence of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas. Neurology. 1988;38:1371–4.

    CAS  PubMed  Google Scholar 

  9. Barker FG, et al. Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors. Cancer. 1997;80:936–41.

    PubMed  Google Scholar 

  10. Theeler BJ, et al. Moving toward molecular classification of diffuse gliomas in adults. Neurology. 2012;79:1917–26.

    CAS  PubMed  Google Scholar 

  11. Essig M, et al. MR imaging of neoplastic central nervous system lesions: review and recommendations for current practice. Am J Neuroradiol. 2012;33:803–17.

    CAS  PubMed  Google Scholar 

  12. Gerstner ER, et al. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol. 2008;21:728–35.

    PubMed  Google Scholar 

  13. Zonari P, et al. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology. 2007;49:795–803.

    PubMed  Google Scholar 

  14. PROTOCOL 6686. acrin.org at: http://www.acrin.org/TabID/603/Default.aspx.

  15. Mechtler L. Neuroimaging in neuro-oncology. Neurol Clinic. 2009;27:171–201, ix.

    Google Scholar 

  16. Law M, et al. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology. 2002;222:715–21.

    PubMed  Google Scholar 

  17. Jain R, et al. In vivo correlation of tumor blood volume and permeability with histologic and molecular angiogenic markers in gliomas. Am J Neuroradiol. 2011;32:388–94.

    CAS  PubMed  Google Scholar 

  18. Louis DN, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    PubMed Central  PubMed  Google Scholar 

  19. Kleihues P, Cayenee W. World Health Organization classification of tumours: pathology and genetics: tumours of the nervous system. Lyon: IARC Press – International Agency for Research on Cancer; 2000.

    Google Scholar 

  20. Law M, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol. 2004;25:746–55.

    PubMed  Google Scholar 

  21. Knopp EA, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology. 1999;211:791–8.

    CAS  PubMed  Google Scholar 

  22. Jain R, et al. Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. Am J Neuroradiol. 2008;29:694–700.

    CAS  PubMed  Google Scholar 

  23. Jain R. Perfusion CT imaging of brain tumors: an overview. Am J Neuroradiol. 2011;32:1570–7.

    CAS  PubMed  Google Scholar 

  24. Jackson A, et al. Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol. 2002;23:7–14.

    PubMed  Google Scholar 

  25. Covarrubias DJ, et al. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist. 2004;9:528–37.

    PubMed  Google Scholar 

  26. Sehgal V, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging. 2005;22:439–50.

    PubMed  Google Scholar 

  27. Arvinda HR, et al. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol. 2009;94:87–96.

    CAS  PubMed  Google Scholar 

  28. Lam WW, et al. Pre-operative grading of intracranial glioma. Acta Radiol. 2001;42:548–54.

    CAS  PubMed  Google Scholar 

  29. Lee SJ, et al. Perfusion MR imaging in gliomas: comparison with histologic tumor grade. Korean J Radiol. 2001;2:1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clinic N Am. 2009;19:527–57.

    Google Scholar 

  31. Bruening R, et al. Regional relative blood volume MR maps of meningiomas before and after partial embolization. J Comput Assist Tomogr. 1998;22:104–10.

    CAS  PubMed  Google Scholar 

  32. Awasthi R, et al. Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers. Neuroradiology. 2012;54:205–13.

    PubMed  Google Scholar 

  33. Schmainda KM, et al. Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol. 2004;25:1524–32.

    PubMed  Google Scholar 

  34. Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology. 2008;249:601–13.

    PubMed  Google Scholar 

  35. Cha S, et al. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2005;26:266–73.

    PubMed  Google Scholar 

  36. Maia ACM, et al. Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: role of perfusion-weighted magnetic resonance imaging. J Neurosurg. 2004;101:970–6.

    PubMed  Google Scholar 

  37. Al-Okaili RN, et al. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics. 2006;26:S173–89.

    PubMed  Google Scholar 

  38. Koeller KK, Rushing EJ. From the archives of the AFIP: oligodendroglioma and its variants: radiologic-pathologic correlation. Radiographics. 2005;25:1669–88.

    PubMed  Google Scholar 

  39. Barajas RF, et al. Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncology. 2012;14:942–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Sugahara T, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999;9:53–60.

    CAS  PubMed  Google Scholar 

  41. Cunliffe CH, et al. State-of-the-art pathology: new WHO classification, implications, and new developments. Neuroimaging Clin N Am. 2010;20:259–71.

    PubMed  Google Scholar 

  42. Cenacchi G, Giangaspero F. Emerging tumor entities and variants of CNS neoplasms. J Neuropathol Exp Neurol. 2004;63:185–92.

    PubMed  Google Scholar 

  43. Linscott LL, et al. Pilomyxoid astrocytoma: expanding the imaging spectrum. Am J Neuroradiol. 2008;29:1861–6.

    CAS  PubMed  Google Scholar 

  44. Chang AH, et al. MR imaging of papillary tumor of the pineal region. Am J Neuroradiol. 2008;29:187–9.

    CAS  PubMed  Google Scholar 

  45. Wang M, et al. Monomorphous angiocentric glioma: a distinctive epileptogenic neoplasm with features of infiltrating astrocytoma and ependymoma. J Neuropathol Exp Neurol. 2005;64:875–81.

    PubMed  Google Scholar 

  46. Fruehwald-Pallamar J, et al. Magnetic resonance imaging spectrum of medulloblastoma. Neuroradiology. 2011;53:387–96.

    PubMed  Google Scholar 

  47. Earnest F, et al. Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology. 1988;166:823–7.

    PubMed  Google Scholar 

  48. Wagnerova D, et al. Quantitative MR imaging and spectroscopy of brain tumours: a step forward? Eur Radiol. 2012;22:2307–18.

    PubMed  Google Scholar 

  49. Ferda J, et al. Diffusion tensor magnetic resonance imaging of glial brain tumors. Eur J Radiol. 2010;74:428–36.

    PubMed  Google Scholar 

  50. Jellison BJ, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25:356–69.

    PubMed  Google Scholar 

  51. Romano A, et al. Pre-surgical planning and MR-tractography utility in brain tumour resection. Eur Radiol. 2009;19:2798–808.

    CAS  PubMed  Google Scholar 

  52. Ginsberg LE, et al. The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol. 1998;49:436–40.

    CAS  PubMed  Google Scholar 

  53. Scott JN, et al. How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology. 2002;59:947–9.

    CAS  PubMed  Google Scholar 

  54. Chandrasoma PT, et al. Stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimen. Neurosurgery. 1989;24:160–5.

    CAS  PubMed  Google Scholar 

  55. McGirt MJ, et al. MRI-guided stereotactic biopsy in the diagnosis of glioma: comparison of biopsy and surgical resection specimen. Surg Neurol. 2003;59:277–81; discussion 281–2.

    PubMed  Google Scholar 

  56. van den Bent MJ. Diagnosis and management of oligodendroglioma. Semin Oncol. 2004;31:645–52.

    PubMed  Google Scholar 

  57. Watanabe T, et al. Phenotype versus genotype correlation in oligodendrogliomas and low-grade diffuse astrocytomas. Acta Neuropathol. 2002;103:267–75.

    CAS  PubMed  Google Scholar 

  58. Maia ACM, et al. MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol. 2005;26:777–83.

    PubMed  Google Scholar 

  59. Moritz C, Haughton V. Functional MR imaging: paradigms for clinical preoperative mapping. Magn Reson Imaging Clin N Am. 2003;11:529–42, v.

    PubMed  Google Scholar 

  60. Petrella JR, et al. Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology. 2006;240:793–802.

    PubMed  Google Scholar 

  61. Wood JM, et al. Impact of brain tumor location on morbidity and mortality: a retrospective functional MR imaging study. Am J Neuroradiol. 2011;32:1420–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Al-Okaili RN, et al. Intraaxial brain masses: MR imaging-based diagnostic strategy – initial experience. Radiology. 2007;243:539–50.

    PubMed  Google Scholar 

  63. Young GS. Advanced MRI of adult brain tumors. Neurol Clinic. 2007;25:947–73, viii.

    Google Scholar 

  64. Majós C, et al. Proton MR spectroscopy improves discrimination between tumor and pseudotumoral lesion in solid brain masses. Am J Neuroradiol. 2009;30:544–51.

    PubMed  Google Scholar 

  65. Cunliffe CH, et al. Intracranial lesions mimicking neoplasms. Arch Pathol Lab Med. 2009;133:101–23.

    PubMed  Google Scholar 

  66. Saini J, et al. Conventional and advanced magnetic resonance imaging in tumefactive demyelination. Acta Radiol. 2011;52:1159–68.

    PubMed  Google Scholar 

  67. Saindane AM, et al. Proton MR spectroscopy of tumefactive demyelinating lesions. AJNR Am J Neuroradiol. 2002;23:1378–86.

    PubMed  Google Scholar 

  68. Bitsch A, et al. Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol. 1999;20:1619–27.

    CAS  PubMed  Google Scholar 

  69. Bernarding J, et al. Diffusion- and perfusion-weighted MR imaging in a patient with acute demyelinating encephalomyelitis (ADEM). J Magn Reson Imaging. 2002;15:96–100.

    PubMed  Google Scholar 

  70. Cha S, et al. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002;223:11–29.

    PubMed  Google Scholar 

  71. Malhotra HS, et al. Characterization of tumefactive demyelinating lesions using MR imaging and in-vivo proton MR spectroscopy. Mult Scler. 2009;15:193–203.

    CAS  PubMed  Google Scholar 

  72. Pal D, et al. In vivo proton MR spectroscopy evaluation of pyogenic brain abscesses: a report of 194 cases. Am J Neuroradiol. 2010;31:360–6.

    CAS  PubMed  Google Scholar 

  73. Kapsalaki EZ, et al. The role of proton magnetic resonance spectroscopy in the diagnosis and categorization of cerebral abscesses. Neurosurg Focus. 2008;24:E7.

    PubMed  Google Scholar 

  74. Maia ACM, et al. Diffusion MR imaging for monitoring treatment response. Neuroimaging Clin N Am. 2011;21:153–78, viii–ix.

    PubMed  Google Scholar 

  75. Toh CH, et al. Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. Am J Neuroradiol. 2012;33:1534–8.

    CAS  PubMed  Google Scholar 

  76. Luthra G, et al. Comparative evaluation of fungal, tubercular, and pyogenic brain abscesses with conventional and diffusion MR imaging and proton MR spectroscopy. AJNR Am J Neuroradiol. 2007;28:1332–8.

    CAS  PubMed  Google Scholar 

  77. Gupta RK, et al. Differentiation of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging. AJNR Am J Neuroradiol. 2001;22:1503–9.

    CAS  PubMed  Google Scholar 

  78. Basu S, Alavi A. Molecular imaging (PET) of brain tumors. Neuroimaging Clin N Am. 2009;19:625–46.

    PubMed  Google Scholar 

  79. Di Chiro G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol. 1987;22:360–71.

    PubMed  Google Scholar 

  80. Di Chiro G, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32:1323–9.

    PubMed  Google Scholar 

  81. Alavi JB, et al. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer. 1988;62:1074–8.

    CAS  PubMed  Google Scholar 

  82. Ricci PE, et al. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol. 1998;19:407–13.

    CAS  PubMed  Google Scholar 

  83. Weber W, et al. Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med. 1997;38:802–8.

    CAS  PubMed  Google Scholar 

  84. Isselbacher KJ. Sugar and amino acid transport by cells in culture – differences between normal and malignant cells. N Engl J Med. 1972;286:929–33.

    CAS  PubMed  Google Scholar 

  85. Weber WA, et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med. 2000;27:542–9.

    CAS  PubMed  Google Scholar 

  86. Pöpperl G, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34:1933–42.

    PubMed  Google Scholar 

  87. Krohn KA, et al. Imaging cellular proliferation as a measure of response to therapy. J Clin Pharmacol. 2001;Suppl:96S–103.

    CAS  PubMed  Google Scholar 

  88. Chen W, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.

    CAS  PubMed  Google Scholar 

  89. Kwee SA, et al. Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology. 2007;244:557–65.

    PubMed  Google Scholar 

  90. la Fougere C, et al. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol. 2011;13:806–19.

    PubMed Central  PubMed  Google Scholar 

  91. Cher LM, et al. Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med. 2006;47:410–8.

    CAS  PubMed  Google Scholar 

  92. Patronas NJ, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg. 1985;62:816–22.

    CAS  PubMed  Google Scholar 

  93. Kato T, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. Am J Neuroradiol. 2008;29:1176–82.

    CAS  PubMed  Google Scholar 

  94. Herholz K, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50:1316–22.

    CAS  PubMed  Google Scholar 

  95. Bénard F, et al. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med. 2003;33:148–62.

    PubMed  Google Scholar 

  96. Packer RJ, et al. Central nervous system tumors. Pediatr Clin North Am. 2008;55:121–45, xi.

    PubMed  Google Scholar 

  97. Becker LE. Pathology of pediatric brain tumors. Neuroimaging Clinic N Am. 1999;9:671–90.

    CAS  Google Scholar 

  98. Taylor MD, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2011;123:465–72.

    PubMed Central  PubMed  Google Scholar 

  99. Rumboldt Z, et al. Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol. 2006;27:1362–9.

    CAS  PubMed  Google Scholar 

  100. Poretti A, et al. Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging. 2012;35:32–47.

    PubMed  Google Scholar 

  101. Brastianos PK, Batchelor TT. Primary central nervous system lymphoma: overview of current treatment strategies. Hematol Oncol Clin North Am. 2012;26:897–916.

    PubMed  Google Scholar 

  102. Chinn RJ, et al. Toxoplasmosis and primary central nervous system lymphoma in HIV infection: diagnosis with MR spectroscopy. Radiology. 1995;197:649–54.

    CAS  PubMed  Google Scholar 

  103. Guo AC, et al. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology. 2002;224:177–83.

    PubMed  Google Scholar 

  104. Camacho DLA, et al. Differentiation of toxoplasmosis and lymphoma in AIDS patients by using apparent diffusion coefficients. AJNR Am J Neuroradiol. 2003;24:633–7.

    PubMed  Google Scholar 

  105. Barajas RF, et al. Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. Am J Neuroradiol. 2010;31:60–6.

    PubMed Central  PubMed  Google Scholar 

  106. Hartmann M, et al. Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett. 2003;338:119–22.

    CAS  PubMed  Google Scholar 

  107. Ernst TM, et al. Cerebral toxoplasmosis and lymphoma in AIDS: perfusion MR imaging experience in 13 patients. Radiology. 1998;208:663–9.

    CAS  PubMed  Google Scholar 

  108. Burtscher IM, et al. Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am J Neuroradiol. 2000;21:84–93.

    CAS  PubMed  Google Scholar 

  109. Lu S, et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol. 2003;24:937–41.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Dr. Victor Piana de Andrade (Hospital A.C. Camargo – São Paulo – SP) and Dr. Guilherme de Carvalho Campos Neto (Hospital Israelita Albert Einstein – São Paulo – SP) for their help with figures 4 and 10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio José da Rocha MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

da Rocha, A.J., Maia, A.C.M., Malheiros, S.M.F. (2014). Functional Magnetic Resonance Techniques in CNS Tumors. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics