Skip to main content

The Complexity Boundary of Answer Set Programming with Generalized Atoms under the FLP Semantics

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8148))

Abstract

In recent years, Answer Set Programming (ASP), logic programming under the stable model or answer set semantics, has seen several extensions by generalizing the notion of an atom in these programs: be it aggregate atoms, HEX atoms, generalized quantifiers, or abstract constraints, the idea is to have more complicated satisfaction patterns in the lattice of Herbrand interpretations than traditional, simple atoms. In this paper we refer to any of these constructs as generalized atoms. It is known that programs with generalized atoms that have monotonic or antimonotonic satisfaction patterns do not increase complexity with respect to programs with simple atoms (if satisfaction of the generalized atoms can be decided in polynomial time) under most semantics. It is also known that generalized atoms that are nonmonotonic (being neither monotonic nor antimonotonic) can, but need not, increase the complexity by one level in the polynomial hierarchy if non-disjunctive programs under the FLP semantics are considered. In this paper we provide the precise boundary of this complexity gap: programs with convex generalized atom never increase complexity, while allowing a single non-convex generalized atom (under reasonable conditions) always does. We also discuss several implications of this result in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alviano, M., Calimeri, F., Faber, W., Leone, N., Perri, S.: Unfounded Sets and Well-Founded Semantics of Answer Set Programs with Aggregates. JAIR 42, 487–527 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propositional Case. AMAI 15(3/4), 289–323 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artif. Intell. 172(12-13), 1495–1539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Faber, W.: Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 40–52. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer set programming. AI 175(1), 278–298 (2011), special Issue: John McCarthy’s Legacy

    Google Scholar 

  6. Ferraris, P.: Answer Sets for Propositional Theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Liu, L., Truszczyński, M.: Properties and applications of programs with monotone and convex constraints. JAIR 27, 299–334 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alviano, M., Faber, W. (2013). The Complexity Boundary of Answer Set Programming with Generalized Atoms under the FLP Semantics. In: Cabalar, P., Son, T.C. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2013. Lecture Notes in Computer Science(), vol 8148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40564-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40564-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40563-1

  • Online ISBN: 978-3-642-40564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics