Skip to main content

Approximate Epistemic Planning with Postdiction as Answer-Set Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8148))

Abstract

We propose a history-based approximation of the Possible Worlds Semantics (\(\mathcal{PWS}\)) for reasoning about knowledge and action. A respective planning system is implemented by a transformation of the problem domain to an Answer-Set Program. The novelty of our approach is elaboration tolerant support for postdiction under the condition that the plan existence problem is still solvable in NP, as compared to \(\Sigma_2^P\) for non-approximated \(\mathcal{PWS}\) of [20]. We demonstrate our planner with standard problems and present its integration in a cognitive robotics framework for high-level control in a smart home.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computational Intelligence 11, 625–655 (1995)

    Article  MathSciNet  Google Scholar 

  2. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and approximate planning in the presence of incompleteness. Artificial Intelligence 122 (2000)

    Google Scholar 

  3. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic planning via symbolic model checking. Artificial Intelligence 147, 35–84 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eppe, M., Bhatt, M.: Narrative based Postdictive Reasoning for Cognitive Robotics. In: 11th Int’l Symposium on Logical Formalizations of Commonsense Reasoning (2013)

    Google Scholar 

  5. Eppe, M., Bhatt, M., Dylla, F.: h-approximation: History-Based Approximation to Possible World Semantics as ASP. Technical report, arXiv:1304.4925v1 (2013)

    Google Scholar 

  6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan and Claypool (2012)

    Google Scholar 

  7. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. The Journal of Logic Programming 17, 301–321 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoffmann, J., Brafman, R.I.: Contingent planning via heuristic forward search with implicit belief states. In: ICAPS Proceedings (2005)

    Google Scholar 

  9. Krieg-Brückner, B., Röfer, T., Shi, H., Gersdorf, B.: Mobility Assistance in the Bremen Ambient Assisted Living Lab. Journal of GeroPsyc 23, 121–130 (2010)

    Article  Google Scholar 

  10. Lee, J., Palla, R.: Reformulating the situation calculus and the event calculus in the general theory of stable models and in answer set programming. JAIR 43, 571–620 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Liu, Y., Levesque, H.J.: Tractable reasoning with incomplete first-order knowledge in dynamic systems with context-dependent actions. In: IJCAI Proceedings (2005)

    Google Scholar 

  12. Lobo, J., Mendez, G., Taylor, S.: Knowledge and the Action Description Language A. Theory and Practice of Logic Programming 1, 129–184 (2001)

    MathSciNet  MATH  Google Scholar 

  13. McCarthy, J.: Elaboration tolerance. In: Commonsense Reasoning (1998)

    Google Scholar 

  14. Miller, R., Morgenstern, L., Patkos, T.: Reasoning About Knowledge and Action in an Epistemic Event Calculus. In: 11th Int’l Symposium on Logical Formalizations of Commonsense Reasoning (2013)

    Google Scholar 

  15. Moore, R.: A formal theory of knowledge and action. In: Hobbs, J., Moore, R. (eds.) Formal Theories of the Commonsense World, Ablex, Norwood, NJ, pp. 319–358 (1985)

    Google Scholar 

  16. Patkos, T., Plexousakis, D.: Reasoning with Knowledge, Action and Time in Dynamic and Uncertain Domains. In: IJCAI Proceedings, pp. 885–890 (2009)

    Google Scholar 

  17. Petrick, R., Bacchus, F.: Extending the knowledge-based approach to planning with incomplete information and sensing. In: ICAPS Proceedings (2004)

    Google Scholar 

  18. Pettersson, O.: Execution monitoring in robotics: A survey. Robotics and Autonomous Systems 53, 73–88 (2005)

    Article  Google Scholar 

  19. Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artificial Intelligence 144, 1–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Son, T.C., Baral, C.: Formalizing sensing actions - A transition function based approach. Artificial Intelligence 125, 19–91 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thielscher, M.: Representing the knowledge of a robot. In: Proc. of KR (2000)

    Google Scholar 

  22. To, S.T.: On the impact of belief state representation in planning under uncertainty. In: IJCAI Proceedings (2011)

    Google Scholar 

  23. Tu, P.H., Son, T.C., Baral, C.: Reasoning and planning with sensing actions, incomplete information, and static causal laws using answer set programming. Theory and Practice of Logic Programming 7, 377–450 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vlaeminck, H., Vennekens, J., Denecker, M.: A general representation and approximate inference algorithm for sensing actions. In: Australasian Conference on AI (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eppe, M., Bhatt, M., Dylla, F. (2013). Approximate Epistemic Planning with Postdiction as Answer-Set Programming. In: Cabalar, P., Son, T.C. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2013. Lecture Notes in Computer Science(), vol 8148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40564-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40564-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40563-1

  • Online ISBN: 978-3-642-40564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics