Skip to main content

Novel Biomarkers for Cholangiocarcinoma

  • Chapter
  • First Online:
Biliary Tract and Gallbladder Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1817 Accesses

Abstract

The development of cholangiocarcinoma is an uncommon event apart from countries where liver fluke is prevalent. It most commonly occurs as a consequence of chronic inflammation and, therefore, markers of the onset of malignant change need to distinguish between the process of chronic inflammation and neoplastic transformation. Access to samples of tumour is difficult because of its small size but biomarkers have been recognised in plasma, bile and brushings of strictures. The most available biomarkers are derived from the mucus produced by biliary epithelium, where although carbohydrate antigen 19-9 (CA 19-9) and carcinoembryonic antigen (CEA) are frequently relied on for advanced cases where their sensitivity and specificity is about 90 % and 98 %, the diagnostic accuracy is much poorer in early disease. Other mucoproteins have similar results but these markers do not distinguish between other forms of GI cancer. Markers of genetic alterations associated with neoplasia, such as aneuploidy and mutations of P53, have been shown to improve the cytological assessment of brushing samples from biliary strictures. Future understanding of the neoplastic mechanism through gene sequencing promises to give a more accurate picture. Proteomic analysis of serum has demonstrated the presence of some interesting proteins with m/z of 4462 and 11535, which add to the diagnostic value of CA19-9 and CEA to diagnose cholangiocarcinoma from patients with other benign diseases and from healthy volunteers. Leucin- rich alpha-2-glycoprotein, LRG1 is an interesting protein identified by the MALDI technique which has been shown to be concentrated in cholangiocarcinoma tissue and in the serum of these patients. When a serum protein panel combines this novel biomarker with CA19-9 and with the inflammatory marker IL-6 the ROC AUC was 0.98. A multiplexmeasure of biomarkers will be required to bring these novel findings into clinical practice.

“Novel” indicates a new kind of nature: strange; previously unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cullen SN, Chapman RW (2005) Review article: current management of primary sclerosing cholangitis. Aliment Pharmacol Ther 21(8):933–948

    PubMed  CAS  Google Scholar 

  2. Zen Y, Aishima S, Ajioka Y, Haratake J, Kage M, Kondo F et al (2005) Proposal of histological criteria for intraepithelial atypical/proliferative biliary epithelial lesions of the bile duct in hepatolithiasis with respect to cholangiocarcinoma: preliminary report based on interobserver agreement. Pathol Int 55(4):180–188

    PubMed  Google Scholar 

  3. Terada T, Nakanuma Y (1990) Pathological observations of intrahepatic peribiliary glands in 1,000 consecutive autopsy livers. III. Survey of necroinflammation and cystic dilatation. Hepatology 12(5):1229–1233

    PubMed  CAS  Google Scholar 

  4. Terada T, Nakanuma Y (1994) Expression of tenascin, type IV collagen and laminin during human intrahepatic bile duct development and in intrahepatic cholangiocarcinoma. Histopathology 25(2):143–150

    PubMed  CAS  Google Scholar 

  5. Aishima S, Nishihara Y, Kuroda Y, Taguchi K, Iguchi T, Taketomi A et al (2007) Histologic characteristics and prognostic significance in small hepatocellular carcinoma with biliary differentiation: subdivision and comparison with ordinary hepatocellular carcinoma. Am J Surg Pathol 31(5):783–791

    PubMed  Google Scholar 

  6. Van Eyken P, Desmet V (2008) Ductular metaplasia of hepatocytes. In: Sirica AE, Longnecker DS (eds) Biliary and pancreatic ductal epithelia, 1st edn. Maecel Dekker Inc., New York, pp 201–228

    Google Scholar 

  7. Andresen K, Boberg KM, Vedeld HM, Honne H, Hektoen M, Wadsworth CA et al (2012) Novel target genes and a valid biomarker panel identified for cholangiocarcinoma. Epigenetics 7(11):1249–1257

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Sriraksa R, Zeller C, El-Bahrawy MA, Dai W, Daduang J, Jearanaikoon P et al (2011) CpG-island methylation study of liver fluke-related cholangiocarcinoma. Br J Cancer 104(8):1313–1318

    PubMed Central  PubMed  CAS  Google Scholar 

  9. An F, Yamanaka S, Allen S, Roberts LR, Gores GJ, Pawlik TM et al (2012) Silencing of miR-370 in human cholangiocarcinoma by allelic loss and interleukin-6 induced maternal to paternal epigenotype switch. PLoS ONE 7(10):e45606

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Isomoto H (2009) Epigenetic alterations associated with cholangiocarcinoma (review). Oncol Rep 22(2):227–232

    PubMed  CAS  Google Scholar 

  11. Zen Y, Nakanuma Y, Portmann B (2012) Immunoglobulin G4-related sclerosing cholangitis: pathologic features and histologic mimics. Semin Diagn Pathol 29(4):205–211

    PubMed  Google Scholar 

  12. Lazaridis KN, Gores GJ (2006) Primary sclerosing cholangitis and cholangiocarcinoma. Semin Liver Dis 26(1):42–51

    PubMed  CAS  Google Scholar 

  13. Baus-Loncar M, Giraud AS (2005) Multiple regulatory pathways for trefoil factor (TFF) genes. Cell Mol Life Sci 62(24):2921–2931

    PubMed  CAS  Google Scholar 

  14. Kamlua S, Patrakitkomjorn S, Jearanaikoon P, Menheniott TR, Giraud AS, Limpaiboon T (2012) A novel TFF2 splice variant (EX2TFF2) correlates with longer overall survival time in cholangiocarcinoma. Oncol Rep 27(4):1207–1212

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Sasaki M, Ikeda H, Nakanuma Y (2007) Expression profiles of MUC mucins and trefoil factor family (TFF) peptides in the intrahepatic biliary system: physiological distribution and pathological significance. Prog Histochem Cytochem 42(2):61–110

    PubMed  CAS  Google Scholar 

  16. Zen Y, Sasaki M, Fujii T, Chen TC, Chen MF, Yeh TS et al (2006) Different expression patterns of mucin core proteins and cytokeratins during intrahepatic cholangiocarcinogenesis from biliary intraepithelial neoplasia and intraductal papillary neoplasm of the bile duct—an immunohistochemical study of 110 cases of hepatolithiasis. J Hepatol 44(2):350–358

    PubMed  CAS  Google Scholar 

  17. Hughes NR, Pairojkul C, Royce SG, Clouston A, Bhathal PS (2006) Liver fluke-associated and sporadic cholangiocarcinoma: an immunohistochemical study of bile duct, peribiliary gland and tumour cell phenotypes. J Clin Pathol 59(10):1073–1078

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Kim YS, Gum JR Jr, Crawley SC, Deng G, Ho JJ (1999) Mucin gene and antigen expression in biliopancreatic carcinogenesis. Ann Oncol 10(Suppl 4):51–55

    PubMed  Google Scholar 

  19. Kim YS, Gum JR Jr (1995) Diversity of mucin genes, structure, function, and expression. Gastroenterology 109(3):999–1001

    PubMed  CAS  Google Scholar 

  20. Adsay NV, Merati K, Andea A, Sarkar F, Hruban RH, Wilentz RE et al (2002) The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential expression of MUC1 and MUC2 supports the existence of two separate pathways of carcinogenesis. Mod Pathol 15(10):1087–1095

    PubMed  Google Scholar 

  21. Ishikawa A, Sasaki M, Ohira S, Ohta T, Oda K, Nimura Y et al (2004) Aberrant expression of CDX2 is closely related to the intestinal metaplasia and MUC2 expression in intraductal papillary neoplasm of the liver in hepatolithiasis. Lab Invest 84(5):629–638

    PubMed  CAS  Google Scholar 

  22. Seno H, Oshima M, Taniguchi MA, Usami K, Ishikawa TO, Chiba T et al (2002) CDX2 expression in the stomach with intestinal metaplasia and intestinal-type cancer: prognostic implications. Int J Oncol 21(4):769–774

    PubMed  CAS  Google Scholar 

  23. Komatsu M, Jepson S, Arango ME (2001) Carothers carraway CA, carraway KL. Muc4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene 20(4):461–470

    PubMed  CAS  Google Scholar 

  24. Shibahara H, Tamada S, Goto M, Oda K, Nagino M, Nagasaka T et al (2004) Pathologic features of mucin-producing bile duct tumors: two histopathologic categories as counterparts of pancreatic intraductal papillary-mucinous neoplasms. Am J Surg Pathol 28(3):327–338

    PubMed  Google Scholar 

  25. Rouzbahman M, Serra S, Adsay NV, Bejarano PA, Nakanuma Y, Chetty R (2007) Oncocytic papillary neoplasms of the biliary tract: a clinicopathological, mucin core and Wnt pathway protein analysis of four cases. Pathology 39(4):413–418

    PubMed  CAS  Google Scholar 

  26. Nakanuma Y, Sasaki M, Terada T, Harada K (1994) Intrahepatic peribiliary glands of humans II. Pathological spectrum. J Gastroenterol Hepatol 9(1):80–86

    PubMed  CAS  Google Scholar 

  27. Nakanuma Y, Katayanagi K, Terada T, Saito K (1994) Intrahepatic peribiliary glands of humans. I. Anatomy, development and presumed functions. J Gastroenterol Hepatol 9(1):75–79

    PubMed  CAS  Google Scholar 

  28. Terada T, Nakanuma Y (1988) Morphological examination of intrahepatic bile ducts in hepatolithiasis. Virchows Arch A Pathol Anat Histopathol 413(2):167–176

    PubMed  CAS  Google Scholar 

  29. Terada T, Nakanuma Y (1987) Solitary cystic dilation of the intrahepatic bile duct: morphology of two autopsy cases and a review of the literature. Am J Gastroenterol 82(12):1301–1305

    PubMed  CAS  Google Scholar 

  30. Kurumaya H, Ohta G, Nakanuma Y (1989) Endocrine cells in the intrahepatic biliary tree in normal livers and hepatolithiasis. Arch Pathol Lab Med 113(2):143–147

    PubMed  CAS  Google Scholar 

  31. Nakanuma Y, Kurumaya H, Ohta G (1984) Multiple cysts in the hepatic hilum and their pathogenesis. A suggestion of periductal gland origin. Virchows Arch A Pathol Anat Histopathol 404(4):341–350

    PubMed  CAS  Google Scholar 

  32. Terada T, Kida T, Nakanuma Y (1993) Extrahepatic peribiliary glands express alpha-amylase isozymes, trypsin and pancreatic lipase: an immunohistochemical analysis. Hepatology 18(4):803–808

    PubMed  CAS  Google Scholar 

  33. Matsubayashi H, Watanabe H, Yamaguchi T, Ajioka Y, Nishikura K, Kijima H et al (1999) Differences in mucus and K-ras mutation in relation to phenotypes of tumors of the papilla of vater. Cancer 86(4):596–607

    PubMed  CAS  Google Scholar 

  34. Scarlett CJ, Saxby AJ, Nielsen A, Bell C, Samra JS, Hugh T et al (2006) Proteomic profiling of cholangiocarcinoma: diagnostic potential of SELDI-TOF MS in malignant bile duct stricture. Hepatology 44(3):658–666

    PubMed  CAS  Google Scholar 

  35. Murray MD, Burton FR, Di Bisceglie AM (2007) Markedly elevated serum CA 19-9 levels in association with a benign biliary stricture due to primary sclerosing cholangitis. J Clin Gastroenterol 41(1):115–117

    PubMed  Google Scholar 

  36. Sanchez M, Gomes H, Marcus EN (2006) Elevated CA 19-9 levels in a patient with Mirizzi syndrome: case report. South Med J 99(2):160–163

    PubMed  Google Scholar 

  37. La GG, Sofia M, Lombardo R, Latteri S, Ricotta A, Puleo S et al (2012) Adjusting CA19-9 values to predict malignancy in obstructive jaundice: influence of bilirubin and C-reactive protein. World J Gastroenterol 18(31):4150–4155

    Google Scholar 

  38. Vestergaard EM, Hein HO, Meyer H, Grunnet N, Jorgensen J, Wolf H et al (1999) Reference values and biological variation for tumor marker CA 19-9 in serum for different Lewis and secretor genotypes and evaluation of secretor and Lewis genotyping in a Caucasian population. Clin Chem 45(1):54–61

    PubMed  CAS  Google Scholar 

  39. Levy C, Lymp J, Angulo P, Gores GJ, Larusso N, Lindor KD (2005) The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci 50(9):1734–1740

    PubMed  CAS  Google Scholar 

  40. Bjornsson E, Kilander A, Olsson R (1999) CA 19-9 and CEA are unreliable markers for cholangiocarcinoma in patients with primary sclerosing cholangitis. Liver 19(6):501–508

    PubMed  CAS  Google Scholar 

  41. Frebourg T, Bercoff E, Manchon N, Senant J, Basuyau JP, Breton P et al (1988) The evaluation of CA 19-9 antigen level in the early detection of pancreatic cancer. A prospective study of 866 patients. Cancer 62(11):2287–2290

    PubMed  CAS  Google Scholar 

  42. Martin A, Corte MD, Alvarez AM, Rodriguez JC, Andicoechea A, Bongera M et al (2006) Prognostic value of pre-operative serum CA 15.3 levels in breast cancer. Anticancer Res 26(5B):3965–3971

    PubMed  CAS  Google Scholar 

  43. Klee GG, Schreiber WE (2004) MUC1 gene-derived glycoprotein assays for monitoring breast cancer (CA 15-3, CA 27.29, BR): are they measuring the same antigen? Arch Pathol Lab Med 128(10):1131–1135

    PubMed  CAS  Google Scholar 

  44. Molina R, Barak V, van Dalen A, Duffy MJ, Einarsson R, Gion M et al (2005) Tumor markers in breast cancer—European group on tumor markers recommendations. Tumour Biol 26(6):281–293

    PubMed  Google Scholar 

  45. Kokko R, Holli K, Hakama M (2002) Ca 15-3 in the follow-up of localised breast cancer: a prospective study. Eur J Cancer 38(9):1189–1193

    PubMed  CAS  Google Scholar 

  46. Khatcheressian JL, Wolff AC, Smith TJ, Grunfeld E, Muss HB, Vogel VG et al (2006) American society of clinical oncology 2006 update of the breast cancer follow-up and management guidelines in the adjuvant setting. J Clin Oncol 24(31):5091–5097

    PubMed  Google Scholar 

  47. Frenette PS, Thirlwell MP, Trudeau M, Thomson DM, Joseph L, Shuster JS (1994) The diagnostic value of CA 27-29, CA 15-3, mucin-like carcinoma antigen, carcinoembryonic antigen and CA 19-9 in breast and gastrointestinal malignancies. Tumour Biol 15(5):247–254

    PubMed  CAS  Google Scholar 

  48. Colozza M, Cardoso F, Sotiriou C, Larsimont D, Piccart MJ (2005) Bringing molecular prognosis and prediction to the clinic. Clin Breast Cancer 6(1):61–76

    PubMed  CAS  Google Scholar 

  49. Bergquist A, Tribukait B, Glaumann H, Broome U (2000) Can DNA cytometry be used for evaluation of malignancy and premalignancy in bile duct strictures in primary sclerosing cholangitis? J Hepatol 33(6):873–877

    PubMed  CAS  Google Scholar 

  50. Saxby AJ, Nielsen A, Scarlett CJ, Clarkson A, Morey A, Gill A et al (2005) Assessment of HER-2 status in pancreatic adenocarcinoma: correlation of immunohistochemistry, quantitative real-time RT-PCR, and FISH with aneuploidy and survival. Am J Surg Pathol 29(9):1125–1134

    PubMed  Google Scholar 

  51. Lindberg B, Arnelo U, Bergquist A, Thorne A, Hjerpe A, Granqvist S et al (2002) Diagnosis of biliary strictures in conjunction with endoscopic retrograde cholangiopancreaticography, with special reference to patients with primary sclerosing cholangitis. Endoscopy 34(11):909–916

    PubMed  CAS  Google Scholar 

  52. Vasilieva LE, Papadhimitriou SI, Dourakis SP (2012) Modern diagnostic approaches to cholangiocarcinoma. Hepatobiliary Pancreat Dis Int 11(4):349–359

    PubMed  Google Scholar 

  53. Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y (2013) KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 119(9):1669–1674

    PubMed  CAS  Google Scholar 

  54. Hughes NR, Bhathal PS (2013) Adenocarcinoma of gallbladder: an immunohistochemical profile and comparison with cholangiocarcinoma. J Clin Pathol 66(3):212–217

    PubMed  CAS  Google Scholar 

  55. Zimmer V, Hoblinger A, Mihalache F, Assmann G, Acalovschi M, Lammert F (2012) Potential genotype-specific single nucleotide polymorphism interaction of common variation in p53 and its negative regulator mdm2 in cholangiocarcinoma susceptibility. Oncol Lett 4(1):101–106

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Khan SA, Thomas HC, Toledano MB, Cox IJ, Taylor-Robinson SD (2005) p53 Mutations in human cholangiocarcinoma: a review. Liver Int 25(4):704–716

    PubMed  CAS  Google Scholar 

  57. Nutthasirikul N, Limpaiboon T, Leelayuwat C, Patrakitkomjorn S, Jearanaikoon P (2013) Ratio disruption of the 133p53 and TAp53 isoform equilibrium correlates with poor clinical outcome in intrahepatic cholangiocarcinoma. Int J Oncol 42(4):1181–1188

    PubMed  CAS  Google Scholar 

  58. Liu XF, Zhang H, Zhu SG, Zhou XT, Su HL, Xu Z et al (2006) Correlation of p53 gene mutation and expression of P53 protein in cholangiocarcinoma. World J Gastroenterol 12(29):4706–4709

    PubMed  CAS  Google Scholar 

  59. Shin SH, Lee K, Kim BH, Cho NY, Jang JY, Kim YT et al (2012) Bile-based detection of extrahepatic cholangiocarcinoma with quantitative DNA methylation markers and its high sensitivity. J Mol Diagn 14(3):256–263

    PubMed  CAS  Google Scholar 

  60. Henson DE, Albores-Saavedra J, Corle D (1992) Carcinoma of the extrahepatic bile ducts. Histologic types, stage of disease, grade, and survival rates. Cancer 70(6):1498–1501

    PubMed  CAS  Google Scholar 

  61. Duffy MJ (2002) Urokinase-type plasminogen activator: a potent marker of metastatic potential in human cancers. Biochem Soc Trans 30(2):207–210

    PubMed  CAS  Google Scholar 

  62. Smith R, Xue A, Gill A, Scarlett C, Saxby A, Clarkson A et al (2007) High expression of plasminogen activator inhibitor-2 (PAI-2) is a predictor of improved survival in patients with pancreatic adenocarcinoma. World J Surg 31(3):493–502

    PubMed  Google Scholar 

  63. Thummarati P, Wijitburaphat S, Prasopthum A, Menakongka A, Sripa B, Tohtong R et al (2012) High level of urokinase plasminogen activator contributes to cholangiocarcinoma invasion and metastasis. World J Gastroenterol 18(3):244–250

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Terada T, Ohta T, Minato H, Nakanuma Y (1995) Expression of pancreatic trypsinogen/trypsin and cathepsin B in human cholangiocarcinomas and hepatocellular carcinomas. Hum Pathol 26(7):746–752

    PubMed  CAS  Google Scholar 

  65. Jarnagin WR, Klimstra DS, Hezel M, Gonen M, Fong Y, Roggin K et al (2006) Differential cell cycle-regulatory protein expression in biliary tract adenocarcinoma: correlation with anatomic site, pathologic variables, and clinical outcome. J Clin Oncol 24(7):1152–1160

    PubMed  CAS  Google Scholar 

  66. Kuroda Y, Aishima S, Taketomi A, Nishihara Y, Iguchi T, Taguchi K et al (2007) 14-3-3sigma negatively regulates the cell cycle, and its down-regulation is associated with poor outcome in intrahepatic cholangiocarcinoma. Hum Pathol 38(7):1014–1022

    PubMed  CAS  Google Scholar 

  67. Sieuwerts AM, Look MP, Meijer-van Gelder ME, Timmermans M, Trapman AM, Garcia RR et al (2006) Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res 12(11 Pt 1):3319–3328

    Google Scholar 

  68. Keyomarsi K, Tucker SL, Buchholz TA, Callister M, Ding Y, Hortobagyi GN et al (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med 347(20):1566–1575

    PubMed  CAS  Google Scholar 

  69. Romani AA, Crafa P, Desenzani S, Graiani G, Lagrasta C, Sianesi M et al (2007) The expression of HSP27 is associated with poor clinical outcome in intrahepatic cholangiocarcinoma. BMC Cancer 7(1):232

    PubMed Central  PubMed  Google Scholar 

  70. Bloomston M, Zhou JX, Rosemurgy AS, Frankel W, Muro-Cacho CA, Yeatman TJ (2006) Fibrinogen gamma overexpression in pancreatic cancer identified by large-scale proteomic analysis of serum samples. Cancer Res 66(5):2592–2599

    PubMed  CAS  Google Scholar 

  71. Drake RR, Schwegler EE, Malik G, Diaz J, Block T, Mehta A et al (2006) Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics 5(10):1957–1967

    PubMed  CAS  Google Scholar 

  72. Yang Z, Harris LE, Palmer-Toy DE, Hancock WS (2006) Multilectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients. Clin Chem 52(10):1897–1905

    PubMed  CAS  Google Scholar 

  73. Mirzaei H, McBee J, Watts J, Aebersold R (2007) Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Mol Cell Proteomics

    Google Scholar 

  74. Elrick MM, Walgren JL, Mitchell MD, Thompson DC (2006) Proteomics: recent applications and new technologies. Basic Clin Pharmacol Toxicol 98(5):432–441

    PubMed  CAS  Google Scholar 

  75. Orsburn BC (2013) SILAC in biomarker discovery. Methods Mol Biol 1002:123–131

    PubMed  CAS  Google Scholar 

  76. Rabilloud T, Triboulet S (2013) Two-dimensional SDS-PAGE fractionation of biological samples for biomarker discovery. Methods Mol Biol 1002:151–165

    PubMed  CAS  Google Scholar 

  77. Hu Y, Zhang S, Yu J, Liu J, Zheng S (2005) SELDI-TOF-MS: the proteomics and bioinformatics approaches in the diagnosis of breast cancer. Breast 14(4):250–255

    PubMed  Google Scholar 

  78. Thanan R, Oikawa S, Yongvanit P, Hiraku Y, Ma N, Pinlaor S et al (2012) Inflammation-induced protein carbonylation contributes to poor prognosis for cholangiocarcinoma. Free Radic Biol Med 52(8):1465–1472

    PubMed  CAS  Google Scholar 

  79. Sawanyawisuth K, Wongkham C, Riggins GJ, Wongkham S, Araki N (2012) Possible involvement of cyclophilin a processing in fumagillin- induced suppression of cholangiocarcinoma cell proliferation. Asian Pac J Cancer Prev 13(Suppl):137–141

    PubMed  Google Scholar 

  80. Xue A, Chang JW, Chung L, Samra J, Hugh T, Gill A et al (2012) Serum apolipoprotein C-II is prognostic for survival after pancreatic resection for adenocarcinoma. Br J Cancer 107(11):1883–1891

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D et al (2005) Autoantibody signatures in prostate cancer. N Engl J Med 353(12):1224–1235

    PubMed  CAS  Google Scholar 

  82. Cekaite L, Hovig E, Sioud M (2007) Protein arrays: a versatile toolbox for target identification and monitoring of patient immune responses. Methods Mol Biol 360:335–348

    PubMed  CAS  Google Scholar 

  83. Fung ET, Yip TT, Lomas L, Wang Z, Yip C, Meng XY et al (2005) Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int J Cancer 115(5):783–789

    PubMed  CAS  Google Scholar 

  84. Rosty C, Christa L, Kuzdzal S, Baldwin WM, Zahurak ML, Carnot F et al (2002) Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 62(6):1868–1875

    PubMed  CAS  Google Scholar 

  85. Rai AJ, Zhang Z, Rosenzweig J, Shih I, Pham T, Fung ET et al (2002) Proteomic approaches to tumor marker discovery. Arch Pathol Lab Med 126(12):1518–1526

    PubMed  CAS  Google Scholar 

  86. Kozak KR, Su F, Whitelegge JP, Faull K, Reddy S, Farias-Eisner R (2005) Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics 5(17):4589–4596

    PubMed  CAS  Google Scholar 

  87. Lempinen M, Isoniemi H, Makisalo H, Nordin A, Halme L, Arola J et al (2007) Enhanced detection of cholangiocarcinoma with serum trypsinogen-2 in patients with severe bile duct strictures. J Hepatol 47(5):677–683

    PubMed  CAS  Google Scholar 

  88. Sandanayake NS, Sinclair J, Andreola F, Chapman MH, Xue A, Webster GJ et al (2011) A combination of serum leucine-rich alpha-2-glycoprotein 1, CA19-9 and interleukin-6 differentiate biliary tract cancer from benign biliary strictures. Br J Cancer 105(9):1370–1378

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Chen B, Dong JQ, Chen YJ, Wang JM, Tian J, Wang CB et al (2007) Two-dimensional electrophoresis for comparative proteomic analysis of human bile. Hepatobiliary Pancreat Dis Int 6(4):402–406

    PubMed  Google Scholar 

  90. Koopmann J, Thuluvath PJ, Zahurak ML, Kristiansen TZ, Pandey A, Schulick R et al (2004) Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer 101(7):1609–1615

    PubMed  CAS  Google Scholar 

  91. Zhou L, Lu Z, Yang A, Deng R, Mai C, Sang X et al (2007) Comparative proteomic analysis of human pancreatic juice: methodological study. Proteomics 7(8):1345–1355

    PubMed  CAS  Google Scholar 

  92. Shen J, Wang W, Wu J, Feng B, Chen W, Wang M et al (2012) Comparative proteomic profiling of human bile reveals SSP411 as a novel biomarker of cholangiocarcinoma. PLoS ONE 7(10):e47476

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Srisomsap C, Sawangareetrakul P, Subhasitanont P, Panichakul T, Keeratichamroen S, Lirdprapamongkol K et al (2004) Proteomic analysis of cholangiocarcinoma cell line. Proteomics 4(4):1135–1144

    PubMed  CAS  Google Scholar 

  94. Charatcharoenwitthaya P, Enders FB, Halling KC, Lindor KD (2008) Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology 48(4):1106–1117

    PubMed  CAS  Google Scholar 

  95. Ahrendt SA, Rashid A, Chow JT, Eisenberger CF, Pitt HA, Sidransky D (2000) p53 overexpression and K-ras gene mutations in primary sclerosing cholangitis-associated biliary tract cancer. J Hepatobiliary Pancreat Surg 7(4):426–431

    PubMed  CAS  Google Scholar 

  96. Bergan A, Gladhaug IP, Schjolberg A, Bergan AB, Clausen OP (2000) p53 accumulation confers prognostic information in resectable adenocarcinomas with ductal but not with intestinal differentiation in the pancreatic head. Int J Oncol 17(5):921–926

    PubMed  CAS  Google Scholar 

  97. Cong WM, Bakker A, Swalsky PA, Raja S, Woods J, Thomas S et al (2001) Multiple genetic alterations involved in the tumorigenesis of human cholangiocarcinoma: a molecular genetic and clinicopathological study. J Cancer Res Clin Oncol 127(3):187–192

    PubMed  CAS  Google Scholar 

  98. Havlik R, Sbisa E, Tullo A, Kelly MD, Mitry RR, Jiao LR et al (2000) Results of resection for hilar cholangiocarcinoma with analysis of prognostic factors. Hepatogastroenterology 47(34):927–931

    PubMed  CAS  Google Scholar 

  99. Isa T, Tomita S, Nakachi A, Miyazato H, Shimoji H, Kusano T et al (2002) Analysis of microsatellite instability, K-ras gene mutation and p53 protein overexpression in intrahepatic cholangiocarcinoma. Hepatogastroenterology 49(45):604–608

    PubMed  CAS  Google Scholar 

  100. Kim HJ, Yun SS, Jung KH, Kwun WH, Choi JH (1999) Intrahepatic cholangiocarcinoma in Korea. J Hepatobiliary Pancreat Surg 6(2):142–148

    PubMed  CAS  Google Scholar 

  101. Tannapfel A, Engeland K, Weinans L, Katalinic A, Hauss J, Mossner J et al (1999) Expression of p73, a novel protein related to the p53 tumour suppressor p53, and apoptosis in cholangiocellular carcinoma of the liver. Br J Cancer 80(7):1069–1074

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Washington K, Gottfried MR (1996) Expression of p53 in adenocarcinoma of the gallbladder and bile ducts. Liver 16(2):99–104

    PubMed  CAS  Google Scholar 

  103. Chung JY, Hong SM, Choi BY, Cho H, Yu E, Hewitt SM (2009) The expression of phospho-AKT, phospho-mTOR, and PTEN in extrahepatic cholangiocarcinoma. Clin Cancer Res 15(2):660–667

    PubMed  CAS  Google Scholar 

  104. Kawase H, Fujii K, Miyamoto M, Kubota KC, Hirano S, Kondo S et al (2009) Differential LC-MS-based proteomics of surgical human cholangiocarcinoma tissues. J Proteome Res 8(8):4092–4103

    PubMed  CAS  Google Scholar 

  105. Casal JI, Barderas R (2010) Identification of cancer autoantigens in serum: toward diagnostic/prognostic testing? Mol Diagn Ther 14(3):149–154

    PubMed  CAS  Google Scholar 

  106. Liu K, Lin B, Lan X (2013) Aptamers: a promising tool for cancer imaging, diagnosis, and therapy. J Cell Biochem 114(2):250–255

    PubMed  CAS  Google Scholar 

  107. Wang J (2011) Status and its prognostic role in extrahepatic bile duct cancer: a meta-analysis of published studies. p 53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross C. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, R.C. (2014). Novel Biomarkers for Cholangiocarcinoma. In: Herman, J., Pawlik, T., Thomas, Jr., C. (eds) Biliary Tract and Gallbladder Cancer. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40558-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40558-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40557-0

  • Online ISBN: 978-3-642-40558-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics