Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 778 Accesses

Abstract

In this chapter, we discuss single ionization of hydrogen-like atom irradiated by an intense laser field based on the semiclassical simulation of classical trajectory ensemble. We present the interesting energy spectrum and irregular angular distribution of photoelectrons, and discuss partial atomic stabilization and associated atomic survival window. Finally, we show how chaotic trajectories play role in the rescattering process of tunneled electron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ammosov, M.V., Delone, N.B., Krainov, V.P.: Zh. Eksp. Teor. Fiz. 91, 2008 (1986)

    Google Scholar 

  2. Delone, N.B., Krainov, V.P.: J. Opt. Soc .Am. B. 8, 1207 (1991).

    Google Scholar 

  3. Perelomov, A.M., Popov, V.S., Terentev, M.V.: Sov. Phys. JETP. 23, 924 (1966)

    ADS  Google Scholar 

  4. Corkum, P.B.: Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  5. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, pp. 293. Pergamon Press (1977)

    Google Scholar 

  6. Hu, B., Liu, J., Chen, S.G.: Phys. Lett. A 236, 533 (1997)

    Article  ADS  Google Scholar 

  7. Paulus, G.G., et al.: Phys. Rev. Lett. 72, 2851 (1994)

    Google Scholar 

  8. Yang, B., et al.: Phys. Rev. Lett. 71, 3770 (1993)

    Google Scholar 

  9. DiMauro, L.F., Agostini, P.: Adv. Atomic Molecular Opt. Phys. 35, 79 (1995) [4]

    Google Scholar 

  10. van Linden, H.B., van den Heuvell, Muller, H. G.: Multiphoton Processes. In: Smith, S.J., Knight, P. L. (eds.). Cambridge University Press, Cambridge (1988)

    Google Scholar 

  11. Gallagher, T. F.: Phys. Rev. Lett. 61, 2304 (1988)

    Google Scholar 

  12. Corkum, P. B., Burnett, N. H., Brunel, F.: Phys. Rev. Lett. 62, 1259 (1989)

    Google Scholar 

  13. Becker, W., Lohr, A., Kleber, M.: J. Phys.B 27, L325 (1994)

    Google Scholar 

  14. Bao, D., Chen, S.-G., Liu, J.: Appl. Phys. B. 62, 313 (1996)

    Google Scholar 

  15. Walker, B., et al.: Phys. Rev. Lett. 77, 5031 (1996)

    Google Scholar 

  16. Paulus, G.G., Nicklich, W., Walther, H.: Europhys. Lett. 27, 267 (1994)

    Article  ADS  Google Scholar 

  17. Paulus, G.G., et al.: J. Phys.B 27, L703 (1994)

    Google Scholar 

  18. Liu, J., Chen, S-G., Hu, B.: Acta Sinica Physica 7, 89 (1998)

    Google Scholar 

  19. Liu, J., Chen, S. G., Li, B., Hu, B.: Chin. Phys. 9, 24 (2000)

    Google Scholar 

  20. Gavrila, M.: J. Phys. B 35, R147 (2002)

    Article  ADS  Google Scholar 

  21. Su, Q., Eberly, J. H.: J. Opt. Soc. Am. B 7, 564 (1990)

    Google Scholar 

  22. Eberly, J. H., Kulander, K. C.: Sci. 262, 1229 (1993)

    Google Scholar 

  23. Dörr, M., Potvliege, R.M., Shakeshaft, R.: Phys. Rev. Lett. 64, 2003 (1990)

    Article  ADS  Google Scholar 

  24. Kulander, K.C., Schafer, K.J., Krause, J.L.: Phys. Rev. Lett. 66, 2601 (1991)

    Google Scholar 

  25. de Boer, M. P., et al.: Phys. Rev. Lett. 71, 3263 (1993)

    Google Scholar 

  26. Fedorov, M. V., Movsesian, A. M.:The traditional atomic stabilization requires that the laser frequency is higher than or at least comparable with the bound energy, which is usually not satisfied for the atoms in ground state. The stabilization issue is extended to the Rydberg atoms. J. Phys. B 21, L155 (1998)

    Google Scholar 

  27. Piraux, B., Potvliege, R. M.: Phys. Rev. A 57, 5009 (1998)

    Google Scholar 

  28. Pont, M., Shakeshaft, R.: Phys. Rev. A 44, R4110 (1991)

    Google Scholar 

  29. Askeland, S., et al.: Phys. Rev. A 84, 033423 (2011)

    Google Scholar 

  30. Gavrila, M., Simbotin, I., Stroe, M.: Phys. Rev. A 78, 033404 (2008)

    Google Scholar 

  31. Stroe, M., Simbotin, I., Gavrila, M.: Phys. Rev. A 78, 033405 (2008)

    Google Scholar 

  32. Keldysh, L. V., Eksp, Zh.: Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1965)].

    Google Scholar 

  33. Kulyagin, R.V., Taranukhin, V.D.: Laser Phys. 3, 644 (1993)

    Google Scholar 

  34. Gavrilenk, V.P., Oks, E.: Can. J. Phys. 89, 849 (2011)

    Google Scholar 

  35. Liu, H., et al.: PRL 109, 093001 (2012)

    Article  ADS  Google Scholar 

  36. Nubbemeyer, T., et al.: Phys. Rev. Lett. 101, 233001 (2008)

    Article  ADS  Google Scholar 

  37. Doron, E., Smilansky, U., Frenkel, A.: Quantum Chaotic Scattering and Microwave Experiments in Quantum Chaos, Enrico Fermi (1996), G. Casati, I. Guarneri, and U. Smilansky, (eds.) North-Holland (1993).

    Google Scholar 

  38. Eichmann, U., Nubbemeyer, T., Rottke, H., Sandner, W.: Nature 461, 1261 (2009)

    Article  ADS  Google Scholar 

  39. Maher-McWilliams, C., Douglas, P., Barker, P.F.: Nat. Photon. 6, 386 (2012)

    Google Scholar 

  40. Qiu, M., et al.: Science 311, 1440 (2006)

    Google Scholar 

  41. Gilijamse, J.J., Hoekstra, S., van de Meerakker, S.Y.T., Groenenboom, G.C., Meijer, G.: Sci. 313, 1617 (2006)

    Google Scholar 

  42. Scharfenberg, L., van de Meerakker, S.Y.T., Meijer, G.: Phys. Chem. Chem. Phys. 13, 8448 (2011)

    Article  Google Scholar 

  43. Krems, R.V.: Phys. Chem. Chem. Phys. 10, 4079 (2008)

    Article  Google Scholar 

  44. Johnson, K.S., et al.: Sci. 280, 1583 (1998)

    Google Scholar 

  45. Meschede, D.: J. Phys. Conf. Ser. 19, 118 (2005)

    Article  ADS  Google Scholar 

  46. Anderson, B.P., Kasevich, M.A.: Sci. 282, 1686 (1998)

    Google Scholar 

  47. Landsman, A. S., Pfeiffer, A. N., Smolarski, M., Cirelli, C., Keller, U.: arXiv:1111.6036

    Google Scholar 

  48. Huang, K-y., Xia, Q-z.: Phys. Rev. A 87, 033415 (2013)

    Google Scholar 

  49. Nubbemeyer, T., Gorling, K., Saenz, A., Eichmann, U., Sandner, W.: Phys. Rev. Lett. 101, 233001 (2008)

    Article  ADS  Google Scholar 

  50. Yan, T.-M., Popruzhenko, S.V., Vrakking, M. J. J., Bauer, D.: Phys. Rev. Lett. 105, 253002 (2010)

    Google Scholar 

  51. Milos̆ević, D. B., Paulus, G. G., Bauer, D., Becker, W.: J. Phys. B 39, R203 (2006).

    Google Scholar 

  52. Popov, V.S.: Phys. Uspekhi 47, 855 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Liu, J. (2014). Single Ionization in Strong Laser Fields. In: Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields. SpringerBriefs in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40549-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40549-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40548-8

  • Online ISBN: 978-3-642-40549-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics