Skip to main content

Diagnostic Applications of Functionalized Conjugated Polyelectrolytes

  • Chapter
  • First Online:
  • 868 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

In this chapter, the diagnostic applications of CPEs are illustrated from the following three aspects which are diagnostic sensors for disease-related biomarkers, diagnostics of microbial infection, and diagnostics of tumor. Förster resonance energy transfer (FRET) between PFP and fluorescein has been successfully utilized for detection of disease-related genes biomarkers, including DNA single nucleotide polymorphisms (SNPs), methylation, and mutation. The specific conformation-sensitive property of PDA and PT has been utilized to develop diagnostic methods toward bacteria and cancer cells. By taking advantages of signal amplification effect offered by CPEs, the concept of chemical nose/tongue has been employed for the detection and discrimination of proteins, bacteria, and discrimination between normal and cancer cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotech 19:365–370

    Article  CAS  Google Scholar 

  2. Wang J (2000) Survey and summary. Nucleic Acids Res 28:3011–3016

    Article  CAS  Google Scholar 

  3. Daar AS, Thorsteinsdottir H, Martin DK, Smith AC, Nast S, Singer PA (2002) Top ten biotechnologies for improving health in developing countries. Nat Genet 32:229–232

    Article  CAS  Google Scholar 

  4. Expression profiling-best practices for data generation and interpretation in clinical trials. (2004) Nat Rev Genet 5:229–237

    Google Scholar 

  5. Gaylord BS, Heeger AJ, Bazan GC (2002) DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc Natl Acad Sci USA 99:10954–10957

    Article  CAS  Google Scholar 

  6. Gaylord BS, Massie MR, Feinstein SC, Bazan GC (2005) SNP detection using peptide nucleic acid probes and conjugated polymers: applications in neurodegenerative disease identification. Proc Natl Acad Sci USA 102:34–39

    Google Scholar 

  7. Al Attar HA, Norden J, O’Brien S, Monkman AP (2008) Improved single nucleotide polymorphisms detection using conjugated polymer/surfactant system and peptide nucleic acid. Biosens Bioelectron 23:1466–1472

    Article  CAS  Google Scholar 

  8. Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320

    Google Scholar 

  9. Ding C (2007) Other applications of single nucleotide polymorphisms. Trends Biotechnol 25:279–283

    Article  CAS  Google Scholar 

  10. The International HapMap C (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Google Scholar 

  11. Li K, Liu B (2009) Conjugated polyelectrolyte amplified thiazole orange emission for label free sequence specific DNA detection with single nucleotide polymorphism selectivity. Anal Chem 81:4099–4105

    Article  CAS  Google Scholar 

  12. Duan X, Li Z, He F, Wang S (2007) A sensitive and homogeneous SNP detection using cationic conjugated polymers. J Am Chem Soc 129:4154–4155

    Article  CAS  Google Scholar 

  13. Duan X, Yue W, Liu L, Li Z, Li Y, He F, Zhu D, Zhou G, Wang S (2009) Single-nucleotide polymorphism (SNP) genotyping using cationic conjugated polymers in homogeneous solution. Nat Protocols 4:984–991

    Article  Google Scholar 

  14. Duan X, Liu L, Wang S (2009) Homogeneous and one-step fluorescent allele-specific PCR for SNP genotyping assays using conjugated polyelectrolytes. Biosens Bioelectron 24:2095–2099

    Google Scholar 

  15. Duan X, Wang S, Li Z (2008) Conjugated polyelectrolyte-DNA complexes for multi-color and one-tube SNP genotyping assays. Chem Commun 44:1302–1304

    Google Scholar 

  16. Najari A, Ho HA, Gravel J-F, Nobert P, Boudreau D, Leclerc M (2006) Reagentless ultrasensitive specific DNA array detection based on responsive polymeric biochips. Anal Chem 78:7896–7899

    Article  CAS  Google Scholar 

  17. Wang C, Zhan R, Pu K-Y, Liu B (2010) Cationic polyelectrolyte amplified bead array for DNA detection with zeptomole sensitivity and single nucleotide polymorphism selectivity. Adv Funct Mater 20:2597–2604

    Article  CAS  Google Scholar 

  18. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  Google Scholar 

  19. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  CAS  Google Scholar 

  20. Robertson KD, Wolffe AP (2000) DNA methylation in health and disease. Nat Rev Genet 1:11–19

    Article  CAS  Google Scholar 

  21. Feng F, Wang H, Han L, Wang S (2008) Fluorescent conjugated polyelectrolyte as an indicator for convenient detection of DNA methylation. J Am Chem Soc 130:11338–11343

    Article  CAS  Google Scholar 

  22. Sadri R, Hornsby PJ (1996) Rapid analysis of DNA methylation using new restriction enzyme sites created by bisulfite modification. Nucleic Acids Res 24:5058–5059

    Article  CAS  Google Scholar 

  23. Feng F, Liu L, Wang S (2010) Fluorescent conjugated polymer-based FRET technique for detection of DNA methylation of cancer cells. Nat Protocols 5:1255–1264

    Article  CAS  Google Scholar 

  24. Yang Q, Dong Y, Wu W, Zhu C, Chong H, Lu J, Yu D, Liu L, Lv F, Wang S (2012) Detection and differential diagnosis of colon cancer by a cumulative analysis of promoter methylation. Nat Commun 3:1206

    Article  Google Scholar 

  25. Yang Q, Qiu T, Wu W, Zhu C, Liu L, Ying J, Wang S (2011) Simple and sensitive method for detecting point mutations of epidermal growth factor receptor using cationic conjugated polymers. ACS Appl Mater Interfaces 3:4539–4545

    Article  CAS  Google Scholar 

  26. Song J, Yang Q, Lv F, Liu L, Wang S (2012) Visual detection of DNA mutation using multicolor fluorescent coding. ACS Appl Mater Interfaces 4:2885–2890

    Article  CAS  Google Scholar 

  27. Aneja A, Mathur N, Bhatnagar PK, Mathur PC (2009) Detection of known mutations for medical diagnostics by FRET spectroscopy. J Biomater Sci Polym Ed 20:1823–1830

    Google Scholar 

  28. Guan H, Zhou P, Zeng S, Zhou X, Wang Y, He Z (2009) Detection of deletion mutations in DNA using water-soluble cationic fluorescent thiophene copolymer. Talanta 79:153–158

    Article  CAS  Google Scholar 

  29. Feng F, Duan X, Wang S (2009) Fluorescence-amplifying assay for irradiated DNA lesions using water-soluble conjugated polymers. Macromol Rapid Commun 30:147–151

    Article  CAS  Google Scholar 

  30. Kwon IK, Kim JP, Sim SJ (2010) Enhancement of sensitivity using hybrid stimulus for the diagnosis of prostate cancer based on polydiacetylene (PDA) supramolecules. Biosens Bioelectron 26:1548–1553

    Article  CAS  Google Scholar 

  31. Zheng W, He L (2010) Multiplexed detection of protein cancer markers on au/ag-barcoded nanorods using fluorescent-conjugated polymers. Anal Bioanal Chem 397:2261–2270

    Article  CAS  Google Scholar 

  32. Yao Z, Feng X, Li C, Shi G (2009) Conjugated polyelectrolyte as a colorimetric and fluorescent probe for the detection of glutathione. Chem Commun 45:5886–5888

    Google Scholar 

  33. Fan H, Zhang T, Lv S, Jin Q (2010) Fluorescence turn-on assay for glutathione reductase activity based on a conjugated polyelectrolyte with multiple carboxylate groups. J Mater Chem 20:10901–10907

    Article  CAS  Google Scholar 

  34. Wang Y, Liu B (2009) Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 25:12787–12793

    Article  CAS  Google Scholar 

  35. You C–C, Miranda OR, Gider B, Ghosh PS, Kim I-B, Erdogan B, Krovi SA, Bunz UHF, Rotello VM (2007) Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat Nanotech 2:318–323

    Article  CAS  Google Scholar 

  36. Miranda OR, You C–C, Phillips R, Kim I-B, Ghosh PS, Bunz UHF, Rotello VM (2007) Array-based sensing of proteins using conjugated polymers. J Am Chem Soc 129:9856–9857

    Article  CAS  Google Scholar 

  37. Li H, Bazan GC (2009) Conjugated oligoelectrolyte/ssdna aggregates: self-assembled multicomponent chromophores for protein discrimination. Adv Mater 21:964–967

    Google Scholar 

  38. Niamnont N, Mungkarndee R, Techakriengkrai I, Rashatasakhon P, Sukwattanasinitt M (2010) Protein discrimination by fluorescent sensor array constituted of variously charged dendritic phenylene–ethynylene fluorophores. Biosens Bioelectron 26:863–867

    Article  CAS  Google Scholar 

  39. Xu Q, Wu C, Zhu C, Duan X, Liu L, Han Y, Wang Y, Wang S (2010) A water-soluble conjugated polymer for protein identification and denaturation detection. Chem Asian J 5:2524–2529

    Article  CAS  Google Scholar 

  40. Nilsson KPR, Herland A, Hammarstrom P, Inganas O (2005) Conjugated polyelectrolytes: conformation-sensitive optical probes for detection of arnyloid fibril forrnation. Biochemistry 44:3718–3724

    Article  CAS  Google Scholar 

  41. Herland A, Nilsson KPR, Olsson JDM, Hammarström P, Konradsson P, Inganäs O (2005) Synthesis of a regioregular zwitterionic conjugated oligoelectrolyte, usable as an optical probe for detection of amyloid fibril formation at acidic pH. J Am Chem Soc 127:2317–2323

    Google Scholar 

  42. Wigenius J, Andersson MR, Esbjoerner EK, Westerlund F (2011) Interactions between a luminescent conjugated polyelectrolyte and amyloid fibrils investigated with flow linear dichroism spectroscopy. Biochem Biophys Res Commun 408:115–119

    Article  CAS  Google Scholar 

  43. Stabo-Eeg F, Lindgren M, Nilsson KPR, Inganas O, Hammarstrom P (2007) Quantum efficiency and two-photon absorption cross-section of conjugated polyelectrolytes used for protein conformation measurements with applications on amyloid structures. Chem Phys 336:121–126

    Article  CAS  Google Scholar 

  44. Wigenius J, Persson G, Widengren J, Inganas O (2011) Interactions between a luminescent conjugated oligoelectrolyte and insulin during early phases of amyloid formation. Macromol Biosci 11:1120–1127

    Article  CAS  Google Scholar 

  45. Disney MD, Zheng J, Swager TM, Seeberger PH (2004) Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J Am Chem Soc 126:13343–13346

    Article  CAS  Google Scholar 

  46. Baek M-G, Stevens RC, Charych DH (2000) Design and synthesis of novel glycopolythiophene assemblies for colorimetric detection of influenza virus and E. Coli. Bioconjugate Chem 11:777–788

    Google Scholar 

  47. Xue C, Velayudham S, Johnson S, Saha R, Smith A, Brewer W, Murthy P, Bagley ST, Liu H (2009) Highly water-soluble, fluorescent, conjugated fluorene-based glycopolymers with poly(ethylene glycol)-tethered spacers for sensitive detection of E coli. Chem Eur J 15:2289–2295

    Article  CAS  Google Scholar 

  48. Ho H-A, Boissinot M, Bergeron MG, Corbeil G, Doré K, Boudreau D, Leclerc M (2002) Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew Chem Int Ed 41:1548–1551

    Article  CAS  Google Scholar 

  49. Guan H, Cai M, Chen L, Wang Y, He Z (2010) Label-free DNA sensor based on fluorescent cationic polythiophene for the sensitive detection of hepatitis B virus oligonucleotides. Luminescence 25:311–316

    Article  CAS  Google Scholar 

  50. Lee SW, Kang CD, Yang DH, Lee J-S, Kim JM, Ahn DJ, Sim SJ (2007) The development of a generic bioanalytical matrix using polydiacetylenes. Adv Funct Mater 17:2038–2044

    Article  CAS  Google Scholar 

  51. Beaulieu C, Guay D, Wang Z, Leblanc Y, Roy P, Dufresne C, Zamboni R, Berthelette C, Day S, Tsou N, Denis D, Greig G, Mathieu M-C, O’Neill G (2008) Identification of prostaglandin D-2 receptor antagonists based on a tetrahydropyridoindole scaffold. Bioorg Med Chem Lett 18:2696–2700

    Article  CAS  Google Scholar 

  52. Jung YK, Kim TW, Jung C, Cho D-Y, Park HG (2008) A polydiacetylene microchip based on a biotin-streptavidin interaction for the diagnosis of pathogen infections. Small 4:1778–1784

    Article  CAS  Google Scholar 

  53. Meir D, Silbert L, Volinsky R, Kolusheva S, Weiser I, Jelinek R (2008) Colorimetric/fluorescent bacterial sensing by agarose-embedded lipid/polydiacetylene films. J Appl Microbiol 104:787–795

    Article  CAS  Google Scholar 

  54. Zhu C, Yang Q, Liu L, Wang S (2011) Visual optical discrimination and detection of microbial pathogens based on diverse interactions of conjugated polyelectrolytes with cells. J Mater Chem 21:7905–7912

    Article  CAS  Google Scholar 

  55. Phillips RL, Miranda OR, You C–C, Rotello VM, Bunz UHF (2008) Rapid and efficient identification of bacteria using gold-nanoparticle–poly(para-phenyleneethynylene) constructs. Angew Chem Int Ed 47:2590–2594

    Article  CAS  Google Scholar 

  56. Duarte A, Chworos A, Flagan SF, Hanrahan G, Bazan GC (2010) Identification of bacteria by conjugated oligoelectrolyte/single-stranded DNA electrostatic complexes. J Am Chem Soc 132:12562–12564

    Article  CAS  Google Scholar 

  57. Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Proteomic applications for the early detection of cancer. Nat Rev Cancer 3:267–275

    Article  CAS  Google Scholar 

  58. Bajaj A, Miranda OR, Kim IB, Phillips RL, Jerry DJ, Bunz UHF, Rotello VM (2009) Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proc Natl Acad Sci USA 106:10912–10916

    Article  CAS  Google Scholar 

  59. Bajaj A, Miranda OR, Phillips R, Kim I-B, Jerry DJ, Bunz UHF, Rotello VM (2009) Array-based sensing of normal, cancerous, and metastatic cells using conjugated fluorescent polymers. J Am Chem Soc 132:1018–1022

    Article  Google Scholar 

  60. Mi Y, Li K, Liu Y, Pu K-Y, Liu B, Feng S–S (2011) Herceptin functionalized polyhedral oligomeric silsesquioxane-conjugated oligomers-silica/iron oxide nanoparticles for tumor cell sorting and detection. Biomaterials 32:8226–8233

    Article  CAS  Google Scholar 

  61. Song J, Lv F, Yang G, Liu L, Yang Q, Wang S (2012) Aptamer-based polymerase chain reaction for ultrasensitive cell detection. Chem Commun 48:7465–7467

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Wang, S., Lv, F. (2013). Diagnostic Applications of Functionalized Conjugated Polyelectrolytes. In: Functionalized Conjugated Polyelectrolytes. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40540-2_2

Download citation

Publish with us

Policies and ethics