Skip to main content

An Improved Application Level Multi-path Streaming Algorithm for HBDP Networks

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8083))

Included in the following conference series:

  • 1999 Accesses

Abstract

Data intensive computing applications which require access to geographically distributed data are increasingly important in the grid and cloud computing field. We designed a novel approach to the task of transferring bulk data between remote hosts, based on the fork-join queueing model, by combining, at application level, the use of classical pipes as a mean of serializing data locally with multiple parallel TCP connections which ensure high bandwidth throughput. Our new experiments in 1 Gbps and up to 9 Gbps high bandwidth networks have proven the validity of our improved multi-path transmission algorithms. Both simple file transfers and arbitrary data streaming were done effectively, efficiently, in parallel, between pairs of distributed processes connected via extended fast pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP Extensions for Multipath Operation with Multiple Addresses draft-ietf-mptcp-multiaddressed-09. IETF draft (June 2012)

    Google Scholar 

  2. ATLAS Experiment, http://www.atlas.ch/

  3. bbftpPRO, http://bbftppro.myftp.org/

  4. Jin, C., Wei, D., Low, S.: FAST TCP: Motivation, Architecture, Algorithms, Performance. In: Proceedings of IEEE Infocom, Hong Kong (March 2004)

    Google Scholar 

  5. Katabi, D.: Decoupling Congestion Control and Bandwidth Allocation Policy with Application to High Bandwidth-Delay Product Networks. Ph.D. dissertation, Massachusetts Institute of Technology (March 2003)

    Google Scholar 

  6. Schrager, D., Radulescu, F.: Efficient Algorithms for Fast Data Transfers Using Long and Large Pipes in WAN Networks. In: 19th International Conference on Control Systems and Computer Science (CSCS-19) (May 2013)

    Google Scholar 

  7. He, E., Leigh, J., Yu, O., DeFanti, T.: Reliable Blast UDP: Predictable High Performance Bulk Data Transfer. In: Proceedings of IEEE International Conference on Cluster Computing (2002)

    Google Scholar 

  8. Sivakumar, H., Bailey, S., Grossman, R.L.: PSockets: The case for application-level network striping for data intensive applications using high speed wide area networks. In: Proceedings of the IEEE/ACM SC2000 Conference (2000)

    Google Scholar 

  9. Crowcroft, J., Oechslin, P.: Differentiated End-to-End Internet Services Using a Weighted Proportional Fair Sharing TCP. ACM SIGCOMM Computer Communication Review 28(3), 53–69 (1998)

    Article  Google Scholar 

  10. Postel, J.: Transmission Control Protocol. RFC 793 (September 1981)

    Google Scholar 

  11. Postel, J.: User Datagram Protocol. RFC 768 (August 1980)

    Google Scholar 

  12. Brakmo, L., Peterson, L.: TCP Vegas: End to End Congestion Avoidance on a Global Internet. IEEE Journal on Selected Areas in Communications 13(8) (October 1995)

    Google Scholar 

  13. Flatto, L., Hahn, S.: Two parallel queues created by arrivals with two demands. SIAM J. Appl. Math. 44(5), 1041–1053 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Allman, M., Ostermann, S., Kruse, H.: Data Transfer Efficiency over Satellite Circuits Using A Multi-Socket Extension to the File Transfer Protocol (FTP). In: Proceedings of the ACTS Results Conference, NASA Lewis Research (1995)

    Google Scholar 

  15. Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: TCP Selective Acknowledgment Options. RFC 2018 (October 1996)

    Google Scholar 

  16. pmr, http://zakalwe.fi/~shd/foss/pmr/

  17. Floyd, S.: HighSpeed TCP for Large Congestion Windows. RFC 3649 (December 2003)

    Google Scholar 

  18. VIRGO Detector, https://wwwcascina.virgo.infn.it/

  19. Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., Tuecke, S.: GridFTP: Protocol Extensions to FTP for the Grid. Global Grid Forum Recommendation Document GFD.20 (2005)

    Google Scholar 

  20. Gu, Y., Grossman, R.: SABUL: A Transport Protocol for Grid Computing. Journal of Grid Computing 1(4), 377–386 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schrager, D., Radulescu, F. (2013). An Improved Application Level Multi-path Streaming Algorithm for HBDP Networks. In: BÇŽdicÇŽ, C., Nguyen, N.T., Brezovan, M. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2013. Lecture Notes in Computer Science(), vol 8083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40495-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40495-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40494-8

  • Online ISBN: 978-3-642-40495-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics