Skip to main content

Cancer Genetics

  • Chapter
  • First Online:
  • 1059 Accesses

Abstract

A fundamental characteristic of cancer cells is their ability to proliferate and survive outside of their normal physiologic context. This ability is acquired through genetic and epigenetic alterations that modify the cell’s interaction with its environment. As such, some of the most common cancer-related genes are involved in cell cycle, differentiation, apoptosis, and angiogenesis. These genes are often referred to as oncogenes and tumor suppressor genes, depending on whether cancer-causing mutations result in gain or loss of function, respectively. Here we will review some of the genes and pathways that commonly are deregulated in cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599–602.

    Article  PubMed  Google Scholar 

  2. Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363(23):2191–9.

    Article  PubMed  Google Scholar 

  3. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4(12):937–47.

    Article  PubMed  CAS  Google Scholar 

  4. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–9.

    PubMed  CAS  Google Scholar 

  5. Pollock PM, Meltzer PS. A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell. 2002;2(1):5–7.

    Article  PubMed  CAS  Google Scholar 

  6. Onken MD, Worley LA, Long MD, et al. Oncogenic mutations in GNAQ occur early in uveal melanoma. Invest Ophthalmol Vis Sci. 2008;49(12):5230–4.

    Article  PubMed  Google Scholar 

  7. Elliott RL, Blobe GC. Role of transforming growth factor Beta in human cancer. J Clin Oncol. 2005;23(9):2078–93.

    Article  PubMed  CAS  Google Scholar 

  8. Woodward JK, Rennie IG, Burn JL, Sisley K. A potential role for TGFbeta in the regulation of uveal melanoma adhesive interactions with the hepatic endothelium. Invest Ophthalmol Vis Sci. 2005;46(10):3473–7.

    Article  PubMed  Google Scholar 

  9. Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 2000;14(19):2393–409.

    Article  PubMed  CAS  Google Scholar 

  10. Brantley Jr MA, Harbour JW. Inactivation of retinoblastoma protein in uveal melanoma by phosphorylation of sites in the COOH-terminal region. Cancer Res. 2000;60(16):4320–3.

    PubMed  CAS  Google Scholar 

  11. Brantley Jr MA, Harbour JW. Deregulation of the Rb and p53 pathways in uveal melanoma. Am J Pathol. 2000;157(6):1795–801.

    Article  PubMed  Google Scholar 

  12. Coupland SE, Anastassiou G, Stang A, et al. The prognostic value of cyclin D1, p53, and MDM2 protein expression in uveal melanoma. J Pathol. 2000;191(2):120–6.

    Article  PubMed  CAS  Google Scholar 

  13. Henriksson M, Luscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res. 1996;68:109–82.

    Article  PubMed  CAS  Google Scholar 

  14. Parrella P, Caballero OL, Sidransky D, Merbs SL. Detection of c-myc amplification in uveal melanoma by fluorescent in situ hybridization. Invest Ophthalmol Vis Sci. 2001;42(8):1679–84.

    PubMed  CAS  Google Scholar 

  15. Royds JA, Sharrard RM, Parsons MA, et al. C-myc oncogene expression in ocular melanomas. Graefes Arch Clin Exp Ophthalmol. 1992;230(4):366–71.

    Article  PubMed  CAS  Google Scholar 

  16. Dragovich T, Rudin CM, Thompson CB. Signal transduction pathways that regulate cell survival and cell death. Oncogene. 1998;17(25):3207–13.

    Article  PubMed  Google Scholar 

  17. Prives C, Hall PA. The p53 pathway. J Pathol. 1999;187(1):112–26.

    Article  PubMed  CAS  Google Scholar 

  18. Sun Y, Tran BN, Worley LA, et al. Functional analysis of the p53 pathway in response to ionizing radiation in uveal melanoma. Invest Ophthalmol Vis Sci. 2005;46(5):1561–4.

    Article  PubMed  Google Scholar 

  19. Nork TM, Poulsen GL, Millecchia LL, et al. p53 regulates apoptosis in human retinoblastoma. Arch Ophthalmol. 1997;115(2):213–9.

    Article  PubMed  CAS  Google Scholar 

  20. Harbour JW, Worley L, Ma D, Cohen M. Transducible peptide therapy for uveal melanoma and retinoblastoma. Arch Ophthalmol. 2002;120(10):1341–6.

    Article  PubMed  CAS  Google Scholar 

  21. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899–911.

    Article  PubMed  CAS  Google Scholar 

  22. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6(8):611–22.

    Article  PubMed  CAS  Google Scholar 

  23. Heine B, Coupland SE, Kneiff S, et al. Telomerase expression in uveal melanoma. Br J Ophthalmol. 2000;84(2):217–23.

    Article  PubMed  CAS  Google Scholar 

  24. Risinger MA, Groden J. Crosslinks and crosstalk: human cancer syndromes and DNA repair defects. Cancer Cell. 2004;6(6):539–45.

    PubMed  CAS  Google Scholar 

  25. Iscovich J, Abdulrazik M, Cour C, et al. Prevalence of the BRCA2 6174 del T mutation in Israeli uveal melanoma patients. Int J Cancer. 2002;98(1):42–4.

    Article  PubMed  CAS  Google Scholar 

  26. Scott RJ, Vajdic CM, Armstrong BK, et al. BRCA2 mutations in a population-based series of patients with ocular melanoma. Int J Cancer. 2002;102(2):188–91.

    Article  PubMed  CAS  Google Scholar 

  27. Harbour JW, Onken MD, Roberson ED, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–3.

    Article  PubMed  CAS  Google Scholar 

  28. Abdel-Rahman MH, Pilarski R, Cebulla CM, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011;48(12):856–9.

    Article  PubMed  CAS  Google Scholar 

  29. Murali R, Wiesner T, Scolyer RA. Tumours associated with BAP1 mutations. Pathology. 2013;45(2):116–26.

    Article  PubMed  CAS  Google Scholar 

  30. Testa JR, Cheung M, Pei J, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–5.

    Article  PubMed  CAS  Google Scholar 

  31. Wiesner T, Obenauf AC, Murali R, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43(10):1018–21.

    Article  PubMed  CAS  Google Scholar 

  32. Bonnal S, Vigevani L, Valcarcel J. The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov. 2012;11(11):847–59.

    Article  PubMed  CAS  Google Scholar 

  33. Harbour JW, Roberson ED, Anbunathan H, et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat Genet. 2013;45(2):133–5.

    Article  PubMed  CAS  Google Scholar 

  34. Isono K, Mizutani-Koseki Y, Komori T, et al. Mammalian polycomb-mediated repression of Hox genes requires the essential spliceosomal protein Sf3b1. Genes Dev. 2005;19(5):536–41.

    Article  PubMed  CAS  Google Scholar 

  35. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3(7):643–51.

    Article  PubMed  CAS  Google Scholar 

  36. Kvanta A, Steen B, Seregard S. Expression of vascular endothelial growth factor (VEGF) in retinoblastoma but not in posterior uveal melanoma. Exp Eye Res. 1996;63(5):511–8.

    Article  PubMed  CAS  Google Scholar 

  37. Escalona-Benz E, Jockovich ME, Murray TG, et al. Combretastatin A-4 prodrug in the treatment of a murine model of retinoblastoma. Invest Ophthalmol Vis Sci. 2005;46(1):8–11.

    Article  PubMed  Google Scholar 

  38. Sheidow TG, Hooper PL, Crukley C, et al. Expression of vascular endothelial growth factor in uveal melanoma and its correlation with metastasis. Br J Ophthalmol. 2000;84(7):750–6.

    Article  PubMed  CAS  Google Scholar 

  39. Quintero M, Mackenzie N, Brennan PA. Hypoxia-inducible factor 1 (HIF-1) in cancer. Eur J Surg Oncol. 2004;30(5):465–8.

    Article  PubMed  CAS  Google Scholar 

  40. Kaelin Jr WG. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002;2(9):673–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. William Harbour MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harbour, J.W., Chao, D.L. (2014). Cancer Genetics. In: Singh, A., Damato, B. (eds) Clinical Ophthalmic Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40489-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40489-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40488-7

  • Online ISBN: 978-3-642-40489-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics