Advertisement

Ageing, Technology Anxiety and Intuitive Use of Complex Interfaces

  • Raghavendra Reddy Gudur
  • Alethea Blackler
  • Vesna Popovic
  • Doug Mahar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8119)

Abstract

This paper presents the outcome of a study that investigated the relationships between technology prior experience, self-efficacy, technology anxiety, complexity of interface (nested versus flat) and intuitive use in older people. The findings show that, as expected, older people took less time to complete the task on the interface that used a flat structure when compared to the interface that used a complex nested structure. All age groups also used the flat interface more intuitively. However, contrary to what was hypothesised, older age groups did better under anxious conditions. Interestingly, older participants did not make significantly more errors compared with younger age groups on either interface structures.

Keywords

Prior-experience Technology anxiety self-efficacy Intuitive interaction Ageing Complex Interfaces 

References

  1. 1.
    Czaja, S.J., Lee, C.: The impact of aging on access to technology. Universal Access in the Information Society 5(4), 341–349 (2007)CrossRefGoogle Scholar
  2. 2.
    Blackler, A.: Intuitive interaction with complex artefacts. In: School of Design 2006. Queensland university of Technology, Brisbane (2006)Google Scholar
  3. 3.
    Hurtienne, J., Blessing, L.: Design for intuitive use - Testing image schema theory for user interface design. In: International Conference on Engineering Design, ICED 2007, Paris (2007)Google Scholar
  4. 4.
    Docampo Rama, M., Ridder, H.D., Bouma, H.: Technology generation and Age in using layered user interfaces. Gerontechnology 1(1), 25–40 (2001)CrossRefGoogle Scholar
  5. 5.
    Docampo Rama, M.: Technology generations handling complex user interfaces. In: J. F. Schouten Instituut for User-System Interaction Research 2001, pp. 1–134. Technische Universiteit Eindhoven, Eindhoven (2001)Google Scholar
  6. 6.
    Detweiler, M.G., Hess, S.M., Ellis, R.D.: The effects of display layout on keeping track of visuo-spatial information. In: Rogers, W.A., Fisk, A.D., Walker, N. (eds.) Aging and Skilled Performance: Advances in Theory and Applications, pp. 157–184. Lawrence Erlbaum Associates, Mahwah (1996)Google Scholar
  7. 7.
    Eisma, R., et al.: Mutual inspiration in the development of new technology for older people. In: Proceedings of Include 2003 (2003)Google Scholar
  8. 8.
    Bastick, T.: Intuition: evaluating the construct and Its impact on creative thinking 2003, xxxvi, p. 494. Stoneman & Lang., Kingston (2003)Google Scholar
  9. 9.
    Blackler, A.: Intuitive Interaction with Complex Artefacts: Empirically-based research 2008, p. 324. VDM Verlag Dr. MÜller, SaarbrÜcken (2008)Google Scholar
  10. 10.
    Turner, P.: Towards an account of intuitiveness. Behaviour & Information Technology 27(6), 475–482 (2008)CrossRefGoogle Scholar
  11. 11.
    Hurtienne, J., Weber, K., Blessing, L.: Prior Experience and Intuitive Use: Image Schemas in User Centred Design. In: Langdon, P., Clarkson, P.J., Robinson, P. (eds.) Designing Inclusive Futures, pp. 107–116. Springer, London (2008)CrossRefGoogle Scholar
  12. 12.
    Blackler, A., Popovic, V., Mahar, D.: Investigating users’ intuitive interaction with complex artefacts. Applied Ergonomics 41(1), 72–92 (2010)CrossRefGoogle Scholar
  13. 13.
    Häikiö, J., et al.: Touch-based user interface for elderly users. In: Proceedings of the 9th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 289–296. ACM, Singapore (2007)CrossRefGoogle Scholar
  14. 14.
    Taveira, A.D., Choi, S.D.: Review Study of Computer Input Devices and Older Users. International Journal of Human-Computer Interaction 25(5), 455–474 (2009)CrossRefGoogle Scholar
  15. 15.
    Isomursu, M., et al.: Experiences from a Touch-Based Interaction and Digitally Enhanced Meal-Delivery Service for the Elderly. In: Advances in Human-Computer Interaction 2008 (2008)Google Scholar
  16. 16.
    Umemuro, H.: Lowering elderly Japanese users’ resistance towards computers by using touchscreen technology. Universal Access in the Information Society 3(3-4), 276–288 (2004)CrossRefGoogle Scholar
  17. 17.
    Czaja, S.J., Lee, C.C.: Information Technology and Older Adults. In: Sears, A., Jacko, J.A. (eds.) Human Computer Interaction: Designing for Diverse Users and Domains. Taylor & Francis Group (2009)Google Scholar
  18. 18.
    Ziefle, M.: Information presentation in small screen devices: The trade-off between visual density and menu foresight. Applied Ergonomics 41(6), 719–730 (2010)CrossRefGoogle Scholar
  19. 19.
    Zaphiris, P., Kurniawan, S.H., Ellis, R.D.: Age related differences and the depth vs. breadth tradeoff in hierarchical online information systems. In: Carbonell, N., Stephanidis, C. (eds.) UI4ALL 2002. LNCS, vol. 2615, pp. 23–42. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Kiger, J.I.: The depth/breadth trade-off in the design of menu-driven user interfaces. Int. J. Man-Mach. Stud. 20(2), 201–213 (1984)CrossRefGoogle Scholar
  21. 21.
    Geven, A., Sefelin, R., Tscheligi, M.: Depth and breadth away from the desktop: the optimal information hierarchy for mobile use. In: Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services 2006, pp. 157–164. ACM, Helsinki (2006)Google Scholar
  22. 22.
    Landauer, T.K., Nachbar, D.W.: Selection from alphabetic and numeric menu trees using a touch screen: breadth, depth, and width. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 1985, pp. 73–78. ACM, San Francisco (1985)Google Scholar
  23. 23.
    Miller, D.P.: Depth/breadth tradeoff in hierarchical computer menus. In: 25th Annual Meeting of the Human Factors Society (1981)Google Scholar
  24. 24.
    Lim, C.S.C.: Designing inclusive ICT products for older users: taking into account the technology generation effect. Journal of Engineering Design 21(2-3), 189–206 (2009)Google Scholar
  25. 25.
    Schwarzer, R., Jerusalem, M.: Generalized Self-Efficacy scale. In: Weinman, J., Wright, S., Johnston, M. (eds.) Measures in Health Psychology: A User’s Portfolio, Causal and Control Beliefs, pp. 35–37. NFER-NELSON, Windsor (1995)Google Scholar
  26. 26.
    Cassidy, S., Eachus, P.: Developing the Computer User Self-Efficacy (CUSE) Scale: Investigating the Relationship Between Computer Self-Efficacy, Gender, and Experience with Computers. Journal of Educational Computing Research 26(2), 133–153 (2002)CrossRefGoogle Scholar
  27. 27.
    Spielberger, C.D.: Understanding stress and anxiety. Life cycle series. Thomas Nelson Australia, West Melbourne (1979)Google Scholar
  28. 28.
    Marteau, T.M., Bekker, H.: The development of a six-item short-form of the state scale of the Spielberger State- Trait Anxiety Inventory (STAI). British Journal of Clinical Psychology 31(3), 301–306 (1992)CrossRefGoogle Scholar
  29. 29.
    Reddy, G.R., et al.: Ageing and use of complex product interfaces. In: IASDR 2011 Diversity and Unity. TUDelft, Netherlands (2011)Google Scholar
  30. 30.
    Reddy, G.R., et al.: The effects of cognitive ageing on use of complex interfaces. In: OzCHI. ACM, Brisbane (2010)Google Scholar
  31. 31.
    Charness, N.: Visual Short-term Memory and Aging in Chess Players. Journal of Gerontology 36(5), 615–619 (1981)CrossRefGoogle Scholar
  32. 32.
    Cowan, N.: The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences 24(1), 87–114 (2001)CrossRefGoogle Scholar
  33. 33.
    Hawthorn, D.: Interface design and engagement with older people. Behaviour & Information Technology 26(4), 333–341 (2007)CrossRefGoogle Scholar
  34. 34.
    Hurtienne, J.: Image schemas and Design for intuitive use. In: Fakultät, V. (ed.) Fakultät V - Verkehrs- und Maschinensysteme, Technischen Universität, Berlin (2009)Google Scholar
  35. 35.
    Fisk, A.D., et al.: Designing for Older Adults: Principles and Creative Human Factors Approaches. CRC Press, Hoboken (2009)CrossRefGoogle Scholar
  36. 36.
    Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Keppel, G., Wickens, T.D.: Design and Analysis: a Researcher’s Handbook, 4th edn. Pearson Education, Inc., New Jersey (2004)Google Scholar
  38. 38.
    Czaja, S.J., et al.: Factors predicting the use of technology: Findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychology and Aging 21(2), 333–352 (2006)CrossRefGoogle Scholar
  39. 39.
    Bandura, A., Freeman, W., Lightsey, R.: Self-Efficacy: The Exercise of Control. Journal of Cognitive Psychotherapy 13(2), 158–166 (1999)Google Scholar
  40. 40.
    Eysenck, M.W., et al.: Anxiety and cognitive performance: Attentional control theory. Emotion 7(2), 336–353 (2007)CrossRefGoogle Scholar
  41. 41.
    Kosnik, W., et al.: Visual changes in daily life throughout adulthood. Journal of Gerontology 43(3), P63 (1988)Google Scholar
  42. 42.
    Salthouse, T.A.: Major Issues in Cognitive Aging 2010. Oxford University Press, Oxford (2010)Google Scholar
  43. 43.
    Brébion, G., Smith, M., Ehrlich, M.: Working memory and aging: Deficit or strategy differences? Aging, Neuropsychology, and Cognition 4(1), 58–73 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raghavendra Reddy Gudur
    • 1
  • Alethea Blackler
    • 1
  • Vesna Popovic
    • 1
  • Doug Mahar
    • 2
  1. 1.School of DesignQueensland University of TechnologyAustralia
  2. 2.School of Psychology and CounsellingQueensland University of TechnologyAustralia

Personalised recommendations