Advertisement

Comparing Input Modalities for Peripheral Interaction: A Case Study on Peripheral Music Control

  • Doris Hausen
  • Hendrik Richter
  • Adalie Hemme
  • Andreas Butz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8119)

Abstract

In graphical user interfaces, every application usually asks for the user’s full attention during interaction with it. Even marginal side activities often force the user to switch windows, which results in attention shifts and increased cognitive load. Peripheral interaction addresses this problem by providing input facilities in the periphery of the user’s attention by relying on divided attention and human capabilities such as proprioception and spatial memory. Recent work shows promising results by shifting tasks to the periphery for parallel task execution. Up to now, most of these interfaces rely on tag-based objects, tokens or wearable devices, which need to be grasped and manipulated, e.g., by turning, moving or pressing the device.

To explore this design space further, we implemented three modalities for peripheral interaction with a desktop audio player application – graspable interaction, touch and freehand gestures. In an eight-week in-situ deployment, we compared the three modalities to each other and to media keys (as the state-of-the-art approach). We found that all modalities can be successfully used in the (visual and attentional) periphery and reduce the amount of cognitive load when interacting with an audio player.

With this work we intend to (1) illustrate the variety of possible modalities beyond graspable interfaces, (2) give insights on manual peripheral interaction in general and the respective modalities in particular and (3) elaborate on paper based prototypes for the evaluation of peripheral interaction.

Keywords

Peripheral Interaction Input Modalities Audio Control 

References

  1. 1.
    Alonso, M.B., Keyson, D.V.: MusicCube: making digital music tangible. In: CHI EA, pp. 1176–1179 (2005)Google Scholar
  2. 2.
    Altmann, E.M., Trafton, G.J.: Task Interruption: Resumption Lag and the Role of Cues. In: CogSci (2004)Google Scholar
  3. 3.
    Andersen, T.H.: Searching for music: How feedback and input-control change the way we search. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 144–157. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bailey, B.P., Konstan, J.A.: On the need for attention-aware systems: Measuring effects of interruption on task performance, error rate, and affective state. Computers in Human Behavior 22(4), 685–708 (2006)CrossRefGoogle Scholar
  5. 5.
    Bakker, S., van den Hoven, E., Eggen, B.: Design for the Periphery. In: Eurohaptics, pp. 71–80 (2010)Google Scholar
  6. 6.
    Bakker, S., Hoven, E.: Acting by hand: Informing interaction design for the periphery of people’s attention. Interacting with Computers, 119–130 (2012)Google Scholar
  7. 7.
    Bakker, S., Hoven, E., van den Eggen, B., Overbeeke, K.: Exploring peripheral interaction design for primary school teachers. In: TEI, pp. 245–252 (2012)Google Scholar
  8. 8.
    Bakker, S., van den Hoven, E., Eggen, B.: FireFlies: Supporting Primary School Teachers through Open-Ended Interaction Design. In: OzCHI, pp. 26–29 (2012)Google Scholar
  9. 9.
    Baudel, T., Beaudouin-Lafon, M.: Charade: remote control of objects using free-hand gestures. Communications of the ACM 36(7), 28–35 (1993)CrossRefGoogle Scholar
  10. 10.
    Bi, X., Grossman, T., Matejka, J., Fitzmaurice, G.: Magic Desk: bringing multi-touch surfaces into desktop work. In: CHI, pp. 2511–2520 (2011)Google Scholar
  11. 11.
    Butz, A., Schmitz, M., Krüger, A., Hullmann, H.: Tangible UIs for Media Control - Probes Into the Design Space. In: CHI Extended Abstracts (Design Expo), pp. 957–971 (2005)Google Scholar
  12. 12.
    Döring, T., Kern, D., Marshall, P., Pfeiffer, M., Schöning, J., Gruhn, V., Schmidt, A.: Gestural Interaction on the Steering Wheel – Reducing the Visual Demand. In: CHI, pp. 483–492 (2011)Google Scholar
  13. 13.
    Edge, D., Blackwell, A.F.: Peripheral tangible interaction by analytic design. In: TEI, pp. 69–76 (2009)Google Scholar
  14. 14.
    Ferscha, A., Holzmann, C., Resmerita, S.: The Key Knob. In: ICDCS Workshops (2006)Google Scholar
  15. 15.
    Hausen, D., Boring, S., Polleti, J., Butz, A.: Exploring Design and Combination of Ambient Information and Peripheral Interaction. DIS Work in Progress (2012)Google Scholar
  16. 16.
    Hausen, D.: Reducing Cognitive Load by Using the Priphery of our Attention. Workshop Designing for Cognitive Limitations. In: Workshop Designing for Cognitive Limitations. In Conjunction with DIS (2012)Google Scholar
  17. 17.
    Hausen, D., Boring, S., Lueling, C., Rodestock, S., Butz, A.: StaTube: Facilitating State Management in Instant Messaging Systems. In: TEI, pp. 283–290 (2012)Google Scholar
  18. 18.
    Hazlewood, W.R., Stolterman, E., Connelly, K.: Issues in Evaluating Ambient Displays in the Wild: Two Case Studies. In: CHI, pp. 877–886 (2011)Google Scholar
  19. 19.
    Jordà, S., Kaltenbrunner, M., Geiger, G., Bencina, R.: The reactable*. In: ICMC (2005)Google Scholar
  20. 20.
    Kajastila, R.A., Lokki, T.: A Gesture-based and eyes-free control method for mobile devices. In: CHI EA, pp. 3559–3564 (2009)Google Scholar
  21. 21.
    Kane, S.K., Avrahami, D., Wobbrock, J.O., Harrison, B., Rea, A.D., Philipose, M., LaMarca, A.: Bonfire: a nomadic system for hybrid laptop-tabletop interaction. In: UIST, pp. 129–138 (2009)Google Scholar
  22. 22.
    Kranz, M., Freund, S., Holleis, P., Schmidt, A., Arndt, H.: Developing Gestural Input. In: ICDCSW (2006)Google Scholar
  23. 23.
    Mäntyjärvi, J., Kela, J., Korpipää, P., Kallio, S.: Enabling fast and effortless customisation in accelerometer based gesture interaction. In: MUM, pp. 25–31 (2004)Google Scholar
  24. 24.
    Mark, G., Gudith, D., Klocke, U.: The Cost of Interrupted Work: More Speed and Stress. In: CHI, pp. 107–110 (2008)Google Scholar
  25. 25.
    McFarlane, D.: Comparison of four primary methods for coordinating the interruption of people in human-computer interaction. Human-Computer Interaction 17, 63–139 (2002)CrossRefGoogle Scholar
  26. 26.
    Olivera, F., García-Herranz, M., Haya, P.A., Llinás, P.: Do Not Disturb: Physical Interfaces for Parallel Peripheral Interactions. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part II. LNCS, vol. 6947, pp. 479–486. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Pirhonen, A., Brewster, S., Holguin, C.: Gestural and audio metaphors as a means of control for mobile devices. In: CHI, pp. 291–298 (2002)Google Scholar
  28. 28.
    Pousman, Z., Stasko, J.: A Taxonomy of Ambient Information Systems: Four Patterns of Design. In: AVI, pp. 67–74 (2006)Google Scholar
  29. 29.
    Strachan, S., Murray-Smith, R., O’Modhrain, S.: BodySpace: inferring body pose for natural control of a music player. In: CHI EA, pp. 2001–2006 (2007)Google Scholar
  30. 30.
    Wang, F., Cao, X., Ren, X., Irani, P.: Detecting and leveraging finger orientation for interaction with direct-touch surfaces. In: UIST, pp. 23–32 (2009)Google Scholar
  31. 31.
    Wensveen, S., Djajadiningrat, J.: Interaction frogger: a design framework to couple action and function through feedback and feedforward. In: DIS, pp. 177–184 (2004)Google Scholar
  32. 32.
    Wiethoff, A., Schneider, H., Rohs, M., Butz, A., Greenberg, S.: Sketch-a-TUI: Low Cost Prototyping of Tangible Interactions Using Cardboard and Conductive Ink. In: TEI, pp. 309–312 (2012)Google Scholar
  33. 33.
    Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: CHI, pp. 1083–1092 (2009)Google Scholar
  34. 34.
    Zheleva, E., Guiver, J., Mendes Rodrigues, E., Milić-Frayling, N.: Statistical models of music-listening sessions in social media. In: WWW, pp. 1019–1028 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Doris Hausen
    • 1
  • Hendrik Richter
    • 1
  • Adalie Hemme
    • 1
  • Andreas Butz
    • 1
  1. 1.Human-Computer-Interaction GroupUniversity of Munich (LMU)MunichGermany

Personalised recommendations