Skip to main content

Hearing and Sensory Ecology of Acoustic Communication in Bladder Grasshoppers

  • Chapter
  • First Online:
Insect Hearing and Acoustic Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 1))

Abstract

Bladder grasshoppers are a small family of Orthoptera, with ear morphology and physiology, behavior, and sensory ecological features outstanding among acoustic insects. Acoustic communication is characterized by male and female duetting and male phonotaxis. The detection distance of the male signal is exceptional at about 2 km, achieved via stridulation against air-filled abdominal resonators, and exploitation of weather conditions ideal for sound transmission. In at least three species, alternate male morphs occur which are incapable of flight and sound production but copulate with females. Such alternative mating tactics constitute profound selective pressures for sexual competition and the evolution of the communication system. Auditory sensitivity is mediated by an array of six pairs of atympanate ears in abdominal segments A1–A6. The auditory organ, a pleural chordotonal organ, in A1 comprises about 2,000 sensilla, whereas ears in segments A2–A6 are less developed, making pneumorids a unique system for studying the evolution of complex ears from simple precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander AJ, van Staaden MJ (1989) Alternative sexual tactics in male bladder grasshoppers (Orthoptera, Pneumoridae). In: Bruton MN (ed) Alternative Life-History Styles of Animals. Kluwer Academic Publishers, Dordrecht, pp 261–277

    Chapter  Google Scholar 

  • Anderson JC, Laughlin SB (2000) Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system. Vision Res 40:13–31

    Article  PubMed  CAS  Google Scholar 

  • Bailey WJ (2003) Insect duets: underlying mechanisms and their evolution. Physiol Entomol 28:157–174

    Article  Google Scholar 

  • Cokl A, Virant-Doberlet M (1997) Tuning of tibial organ receptor cells in Periplaneta americana L. J Exp Zool 278:395–404

    Article  Google Scholar 

  • Cokl A, Kalmring K, Rössler W (1995) Physiology of atympanate tibial organs in forelegs and midlegs of the cave-living Ensifera, Troglophilus neglectus (Raphidophoridae, Gryllacridoidea). J Exp Zool 273:376–388

    Article  Google Scholar 

  • Couldridge VCK, van Staaden MJ (2004) Habitat-dependent transmission of male advertisement calls in bladder grasshoppers (Orthoptera; Pneumoridae). J Exp Biol 207:2777–2786

    Article  PubMed  Google Scholar 

  • Couldridge VCK, van Staaden MJ (2006) Female preferences for male calling songs in the bladder grasshopper B. membracioides. Behaviour 143:1439–1456

    Article  Google Scholar 

  • Darwin C, Keynes RD (eds) (1988) Charles Darwin’s beagle diary. Cambridge University Press, Cambridge

    Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, London

    Book  Google Scholar 

  • Dirsh VM (1965) Revision of the family pneumoridae (Orthoptera: Acridoidea). Bull B M (N H) Ent 15:325–396

    Google Scholar 

  • Dobler S, Stumpner A, Heller KG (1994) Sex-specific spectral tuning for the partner′s song in the duetting bushcricket Ancistrura nigrovittata (Orthoptera: Phaneropteridae). J Comp Physiol 175:303–310

    Google Scholar 

  • Donelson NC, van Staaden MJ (2005) Alternate Strategies in male bladder grasshoppers Bullacris membracioides (Orthoptera: Pneumoridae). Behaviour 142:761–778

    Article  Google Scholar 

  • Donelson NC, Smith AR, van Staaden MJ (2008) Variation in adult longevity in a polymorphic species. J Orthopt Res 17(2):279–282

    Article  Google Scholar 

  • Einhäupl A, Stange N, Hennig M, Ronacher B (2011) Attractiveness of grasshopper songs correlates with their robustness against noise. Behav Ecol. doi:10.1093/beheco/arr064

    Google Scholar 

  • Enquist M, Arak A (1993) Selection of exaggerated male traits by female aesthetic senses. Nature 361:446–448

    Article  PubMed  CAS  Google Scholar 

  • Ey E, Fischer J (2009) The “acoustic adaptation hypothesis”—a review of the evidence from birds, anurans and mammals. Bioacoustics 19:21–48

    Article  Google Scholar 

  • Flook PK, Rowell CHF (1997) The phylogeny of the Caelifera (Insecta, Orthoptera) as deduced from mtrRNA gene sequences. Mol Phylo Evol 8:89–103

    Article  CAS  Google Scholar 

  • Gray EG (1960) The fine structure of the insect ear. Phil Trans B 243:75–94

    Article  Google Scholar 

  • Hedwig B, Pollack GS (2008) Invertebrate auditory pathways. In: Basbaum AI, Karako A, Shepherd GM and Westheimer G (eds.) The senses: a comprehensive reference, Academic Press, San Diego, pp 525–564

    Google Scholar 

  • von Helversen D, von Helversen O (1997) Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera; Acrididae). J Comp Physiol A180:373–386

    Article  Google Scholar 

  • Jacobs K, Otte B, Lakes-Harlan R (1999) Tympanal receptor cells of Schistocera gregaria: correlation of soma positions and dendrite attachment sites, central projections and physiologies. J Exp Zool 283:270–285

    Article  Google Scholar 

  • Jain M, Balakrishnan R (2012) Does acoustic adaptation drive vertical stratification? A test in a tropical cricket assemblage. Behav Ecol 23:343–354

    Article  Google Scholar 

  • Linder HP (2003) The radiation of the Cape flora, southern Africa. Biol Rev 78:597–638

    Article  PubMed  CAS  Google Scholar 

  • McGregor P (2005) Animal communication networks. Cambridge University Press, Cambridge

    Google Scholar 

  • Michelsen A (1971) The physiology of the locust ear. J Comp Physiol A 71:49–126

    Google Scholar 

  • Michelsen A (1978) Sound reception in different environments. In: Ali MA (ed) Sensory ecology. Plenum Press, New York, pp 345–373

    Chapter  Google Scholar 

  • Moiseff A, Pollack GS, Hoy RR (1978) Steering response of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci USA 75:4052–4056

    Article  PubMed  CAS  Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17–34

    Article  Google Scholar 

  • Müller P, Robert D (2001) A shot in the dark: the silent quest of a free-flying phonotactic fly. J Exp Biol 204:1039–1052

    PubMed  Google Scholar 

  • Oldfield BP (1985) The role of the tympanal membrane and the receptor array in the tuning of auditory receptors in bushcrickets. In: Kalmring K, Elsner N (eds.) Acoustic and vibrational communication in insects, Parey, pp. 17–24

    Google Scholar 

  • Oshinski ML, Hoy RR (2002) Physiology of the auditory afferents in an acoustic parasitoid fly. J Neurosci 15:7254–7263

    Google Scholar 

  • Pflüger HJ, Field LH (1999) A locust chordotonal organ coding for proprioceptive and acoustic stimuli. J Comp Physiol 184:169–183

    Article  Google Scholar 

  • Phelps SM (2007) Sensory ecology and perceptual allocation: new prospects for neural networks. Phil Trans R Soc B 362:355–367

    Article  PubMed  Google Scholar 

  • Phelps SM, Ryan MJ, Rand AS (2001) Vestigial preference functions in neural networks and tungara frogs. Proc Natl Acad Sci USA 98(13):161–166

    Google Scholar 

  • Richards DG, Wiley RH (1980) Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. Am Nat 115:381–399

    Article  Google Scholar 

  • Roeder KD, Treat AE (1957) Ultrasonic reception by the tympanic organ of noctuid moths. J Exp Zool 134:127–157

    Article  PubMed  CAS  Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol 109:101–122

    Article  Google Scholar 

  • Römer H (1987) Representation of auditory distance within a central neuropil of the bushcricket Mygalopsis marki. J Comp Physiol 161:33–42

    Article  Google Scholar 

  • Römer H (1998) The sensory ecology of acoustic communication in insects. In: Hoy RR, Popper AN, Fay RR (eds.) Comparative hearing: insects. Springer, New York, pp 63–96

    Google Scholar 

  • Römer H, Spickermann M, Bailey WJ (1998) Sensory basis for sound intensity discrimination in the bushcricket Requena verticalis (Tettigoniidae, Orthoptera). J Comp Physiol A 182:595–607

    Article  Google Scholar 

  • Schmidt A, Riede K, Römer H (2011) High background noise shapes selective auditory filters in a tropical cricket. J Exp Biol 214:1754–1762

    Article  PubMed  Google Scholar 

  • Schmidt A, Römer H (2011) Solutions to the Cocktail party problem in insects: Selective filters, spatial release from masking and gain control in tropical crickets. PLoS ONE 6(12):e28593. doi:10.1371/journal.pone.0028593

    Article  PubMed  CAS  Google Scholar 

  • Shaw SR (1994) Detection of airborne sound by a cockroach “vibration detector”: a possible missing link in insect auditory evolution. J Exp Zool 193:13–47

    Google Scholar 

  • Smith AR, van Staaden MJ, Carleton KL (2012) An evaluation of the role of sensory drive in the evolution of Lake Malawi cichlid fishes. Int J Evol Biol. doi:10.1155/2012/647420

    PubMed  Google Scholar 

  • van Staaden MJ, Römer H (1997) Sexual signaling in bladder grasshoppers: tactical design for maximizing calling range. J Exp Biol 200:2597–2608

    PubMed  Google Scholar 

  • van Staaden MJ, Römer H (1998) Evolutionary transition from stretch to hearing in ancient grasshoppers. Nature 394:773–776

    Article  Google Scholar 

  • van Staaden MJ, Rieser M, Ott SR, Papst MA, Römer H (2003) Serial hearing organs in the atympanate grasshopper Bullacris membracioides (Orthoptera, Pneumoridae). J Comp Neurol 465:579–592

    Article  PubMed  Google Scholar 

  • Stavenga DG (2004) Visual acuity of fly photoreceptors in natural conditions: dependence on UV sensitizing pigment and light-controlling pupil. J Exp Biol 207:1703–1713

    Article  PubMed  Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94

    Article  Google Scholar 

  • Wiley RH, Richards DG (1982) Adaptations for acoustic communication in birds: sound transmission and signal detection. In: Kroodsma DE, Miller EH, Quellet H (eds) Acoustic communication in birds. Academic Press, New York, pp 131–181

    Chapter  Google Scholar 

  • Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273:1542–1544

    Article  PubMed  CAS  Google Scholar 

  • Yack JE, Fullard JH (1993) What is an Insect Ear? Ann Entomol Soc Am 86:677–682

    Google Scholar 

  • Yack JE, Fullard JH (1990) The mechanoreceptive origin of insect tympanal organs: A comparative study of similar nerves in tympanate and atympanate moths. J Comp Neurol 300:523–534

    Article  PubMed  CAS  Google Scholar 

  • Yager DD (1990) Sexual dimorphism of auditory function and structure in praying mantises (Mantodea; Dictyoptera). J Zool Lond 221:517–553

    Article  Google Scholar 

  • Zimmermann U, Rheinlaender J, Robinson D (1989) Cues for male phonotaxis in the duetting bushcricket Leptophyes punctatissima. J Comp Physiol A 164:621–628

    Article  Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Quart Rev Biol 73:415–438

    Article  Google Scholar 

Download references

Acknowledgments

We thank the students and colleagues who collaborated on experiments in our laboratories and in the field. V. Couldridge and N. Donelson were responsible for the images of B. unicolor and B. membracioides, respectively. Research on which this chapter was based was supported by grants from the Austrian Science Foundation PO9523-BIO to HR, and the National Science Foundation 0091189 to MvS. Preparation of the chapter was supported by grant DUE 0757001 to MvS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Römer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Römer, H., Smith, A.R., van Staaden, M. (2014). Hearing and Sensory Ecology of Acoustic Communication in Bladder Grasshoppers. In: Hedwig, B. (eds) Insect Hearing and Acoustic Communication. Animal Signals and Communication, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40462-7_3

Download citation

Publish with us

Policies and ethics