Skip to main content

Phylogenetic Analysis of Cell Types Using Histone Modifications

  • Conference paper
Algorithms in Bioinformatics (WABI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8126))

Included in the following conference series:

Abstract

In cell differentiation, a cell of a less specialized type becomes one of a more specialized type, even though all cells have the same genome. Transcription factors and epigenetic marks like histone modifications can play a significant role in the differentiation process. In this paper, we present a simple analysis of cell types and differentiation paths using phylogenetic inference based on ChIP-Seq histone modification data. We propose new data representation techniques and new distance measures for ChIP-Seq data and use these together with standard phylogenetic inference methods to build biologically meaningful trees that indicate how diverse types of cells are related. We demonstrate our approach on H3K4me3 and H3K27me3 data for 37 and 13 types of cells respectively, using the dataset to explore various issues surrounding replicate data, variability between cells of the same type, and robustness. The promising results we obtain point the way to a new approach to the study of cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeUwHistone

  2. Barski, A., et al.: High-resolution profiling of histone methylations in the human genome. Cell 129(4), 823–837 (2007)

    Article  Google Scholar 

  3. Berger, S.L.: Histone modifications in transcriptional regulation. Current Opinion in Genetics & Development 12(2), 142–148 (2002)

    Article  Google Scholar 

  4. Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 357–374. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Project Consortium ENCODE: A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9(4), e1001046 (2011)

    Google Scholar 

  6. Fishburn, P.C.: Interval orders and interval graphs: A study of partially ordered sets. Wiley New York (1985)

    Google Scholar 

  7. Goloboff, P.A.: Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15(4), 415–428 (1999)

    Article  Google Scholar 

  8. Lee, J.-H., Hart, S.R., Skalnik, D.G.: Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 38(1), 32–38 (2004)

    Article  Google Scholar 

  9. Lister, R., et al.: Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336), 68–73 (2011)

    Article  Google Scholar 

  10. Lobe, C.G.: Transcription factors and mammalian development. Current Topics in Developmental Biology 27, 351–351 (1992)

    Article  Google Scholar 

  11. Mardis, E.R., et al.: ChIP-seq: welcome to the new frontier. Nature Methods 4(8), 613–613 (2007)

    Article  Google Scholar 

  12. Martin, C., Zhang, Y.: Mechanisms of epigenetic inheritance. Current Opinions Cell Biology 3(19), 266–272 (2007)

    Article  Google Scholar 

  13. Mikkelsen, T.S., et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153), 553–560 (2007)

    Article  Google Scholar 

  14. Nelson, D.L., Cox, M.M.: Lehninger principles of biochemistry. W.H. Freeman (2010)

    Google Scholar 

  15. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nair, N.U., Lin, Y., Bucher, P., Moret, B.M.E. (2013). Phylogenetic Analysis of Cell Types Using Histone Modifications. In: Darling, A., Stoye, J. (eds) Algorithms in Bioinformatics. WABI 2013. Lecture Notes in Computer Science(), vol 8126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40453-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40453-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40452-8

  • Online ISBN: 978-3-642-40453-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics