Skip to main content

Modeling Intratumor Gene Copy Number Heterogeneity Using Fluorescence in Situ Hybridization Data

  • Conference paper
Algorithms in Bioinformatics (WABI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8126))

Included in the following conference series:

Abstract

Tumorigenesis is an evolutionary process which involves a significant number of genomic rearrangements typically coupled with changes in the gene copy number profiles of numerous cells. Fluorescence in situ hybridization (FISH) is a cytogenetic technique which allows counting copy numbers of genes in single cells. The study of cancer progression using FISH data has received considerably less attention compared to other types of cancer datasets.

In this work we focus on inferring likely tumor progression pathways using publicly available FISH data. We model the evolutionary process as a Markov chain in the positive integer cone \(\mathbb{Z}_+^g\) where g is the number of genes examined with FISH. Compared to existing work which oversimplifies reality by assuming independence of copy number changes [24,25], our model is able to capture dependencies. We model the probability distribution of a dataset with hierarchical log-linear models, a popular probabilistic model of count data. Our choice provides an attractive trade-off between parsimony and good data fit. We prove a theorem of independent interest which provides necessary and sufficient conditions for reconstructing oncogenetic trees [8]. Using this theorem we are able to capitalize on the wealth of inter-tumor phylogenetic methods. We show how to produce tumor phylogenetic trees which capture the dynamics of cancer progression. We validate our proposed method on a breast tumor dataset.

Topic: Cancer Genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beerenwinkel, N., Eriksson, N., Strumfels, B.: Conjunctive bayesian networks. Bernoulli 13, 893–909 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beerenwinkel, N., Rahnenführer, J., Däumer, M., Hoffmann, D., Kaiser, R., Selbig, J., Lengauer, T.: Learning multiple evolutionary pathways from cross-sectional data. Journal of Computational Biology 12, 584–598 (2005)

    Article  Google Scholar 

  3. Beerenwinkel, N., Sullivant, S.: Markov models for accumulating mutations. Biometrika 96, 663–676 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bishop, Fienberg, S., Holland, P.: Discrete Multivariate Analysis. MIT Press (1975)

    Google Scholar 

  5. Chowdhury, S.A., et al.: FISHtrees: Modeling tumor progression from fluorescence in situ hybridization (FISH) data from many single cells of solid tumors and their metastases. In: ISMB 2013 (2013)

    Google Scholar 

  6. Dellaportas, P., Forster, J.: Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Log-linear Models. Biometrica (1996)

    Google Scholar 

  7. Derksen, P., Liu, X., Saridin, F., et al.: Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10(5), 437–449 (2006)

    Article  Google Scholar 

  8. Desper, R., et al.: Inferring tree models for oncogenesis from comparative genome hybridization data. Journal of Computational Biology 6(1), 37–51 (1999)

    Article  Google Scholar 

  9. Desper, R., et al.: Distance-based reconstruction of tree models for oncogenesis. J. Comput. Biol. 7(6), 789–803 (2000)

    Article  Google Scholar 

  10. Gasco, M., Shami, S., Crook, T.: The p53 pathway in breast cancer. Breast Cancer Res. 54(2), 70–76 (2002)

    Article  Google Scholar 

  11. Gerstung, M., Baudis, M., Moch, H., Beerenwinkel, N.: Quantifying cancer progression with conjunctive bayesian networks. Bioinformatics 25, 2809–2815 (2009)

    Article  Google Scholar 

  12. Hainke, K., Rahnenführer, J., Fried, R.: Disease progression models: A review and comparison. Dortmund University. Technical Report, http://tinyurl.com/ceyr9wx

  13. Heselmeyer-Haddad, K., et al.: Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of MYC during progression. Journal of American Patholology 181(5), 1807–1822 (2012)

    Article  Google Scholar 

  14. Heydebreck, A., Gunawan, B., Füzesi, L.: Maximum likelihood estimation of oncogenetic tree models. Biostatistics 5(4), 545–556 (2004)

    Article  MATH  Google Scholar 

  15. Krig, S.R., Miller, J.K., Frietze, S., et al.: ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells. Oncogene 29(40), 5500–5510 (2010)

    Article  Google Scholar 

  16. Letouzé, E., Allory, E., Bollet, M., et al.: Analysis of the copy number profiles of several tumor samples from the same patient reveals the successive steps in tumorigenesis. Genome Biology 11, R76 (2010)

    Google Scholar 

  17. Levin, D., Peres, Y., Wilmer, E.: Markov Chains and Mixing Times. American Mathematical Society (2008)

    Google Scholar 

  18. Lin, S., Xia, W., Wang, J., et al.: β-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc. Natl. Acad. Sci. 97(8), 4262–4266 (2000)

    Article  Google Scholar 

  19. Martins, F., et al.: Evolutionary pathways in BRCA1-associated breast tumors. Cancer Discovery 2(6), 503–511 (2012)

    Article  Google Scholar 

  20. Marusyk, A., Polyak, K.: Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1805(1), 105–117 (2010)

    Article  Google Scholar 

  21. Navin, N., Krasnitz, A., Rodgers, L., et al.: Inferring tumor progression from genomic heterogeneity. Genome Res. 20, 68–80 (2010)

    Article  Google Scholar 

  22. Navin, N., et al.: Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011)

    Article  Google Scholar 

  23. Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194, 23–28 (1976)

    Article  Google Scholar 

  24. Pennington, G., Smith, C., Shackney, S., Schwartz, R.: Reconstructing tumor phylogenies from heterogeneous single-cell data. Journal of Bioinformatics and Computational Biology 5(02A), 407–427 (2007)

    Article  Google Scholar 

  25. Pennington, G., Shackney, S., Schwartz, R.: Cancer Phylogenetics from Single-Cell Assays. Technical Report CMU-CS-06-103, http://tinyurl.com/bvjlgch

  26. Schmidt, M.: Graphical Model Structure Learning with l 1-Regularization. Ph.D. Thesis, University of British Columbia (2010)

    Google Scholar 

  27. Schmidt, M., Murphy, K.: Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials. AISTATS (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsourakakis, C.E. (2013). Modeling Intratumor Gene Copy Number Heterogeneity Using Fluorescence in Situ Hybridization Data. In: Darling, A., Stoye, J. (eds) Algorithms in Bioinformatics. WABI 2013. Lecture Notes in Computer Science(), vol 8126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40453-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40453-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40452-8

  • Online ISBN: 978-3-642-40453-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics