Skip to main content

Encodings for Range Selection and Top-k Queries

  • Conference paper
Algorithms – ESA 2013 (ESA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8125))

Included in the following conference series:

Abstract

We study the problem of encoding the positions the top-k elements of an array A[1..n] for a given parameter 1 ≤ k ≤ n. Specifically, for any i and j, we wish create a data structure that reports the positions of the largest k elements in A[i..j] in decreasing order, without accessing A at query time. This is a natural extension of the well-known encoding range-maxima query problem, where only the position of the maximum in A[i..j] is sought, and finds applications in document retrieval and ranking. We give (sometimes tight) upper and lower bounds for this problem and some variants thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing: searching a sorted table with o(1) accesses. In: Proc. SODA, pp. 785–794 (2009)

    Google Scholar 

  2. Bender, M., Farach-Colton, M.: The level ancestor problem simplified. Theor. Comp. Sci. 321(1), 5–12 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J. Comp. 22(2), 221–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brodal, G.S., Fagerberg, R., Greve, M., López-Ortiz, A.: Online sorted range reporting. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 173–182. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Brodal, G., Gfeller, B., Jørgensen, A., Sanders, P.: Towards optimal range medians. Theor. Comp. Sci. 412(24), 2588–2601 (2011)

    Article  MATH  Google Scholar 

  6. Chan, T., Wilkinson, B.: Adaptive and approximate orthogonal range counting. In: Proc. SODA, pp. 241–251 (2013)

    Google Scholar 

  7. Clark, D.: Compact Pat Trees. Ph.D. thesis, Univ. of Waterloo, Canada (1996)

    Google Scholar 

  8. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comp. 40(2), 465–492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gagie, T., Navarro, G., Puglisi, S.: New algorithms on wavelet trees and applications to information retrieval. Theor. Comp. Sci., 426–427, 25–41 (2012)

    Google Scholar 

  10. Gagie, T., Puglisi, S., Turpin, A.: Range quantile queries: another virtue of wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Golynski, A., Munro, I., Rao, S.: Rank/select operations on large alphabets: a tool for text indexing. In: Proc. SODA, pp. 368–373 (2006)

    Google Scholar 

  12. Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. SIAM J. Comp. 13(2), 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hsu, P., Ottaviano, G.: Space-efficient data structures for top-k completion. In: Proc. WWW, pp. 583–594 (2013)

    Google Scholar 

  14. Jørgensen, A., Larsen, K.: Range selection and median: Tight cell probe lower bounds and adaptive data structures. In: Proc. SODA, pp. 805–813 (2011)

    Google Scholar 

  15. Li, G., Ji, S., Li, C., Feng, J.: Efficient type-ahead search on relational data: a tastier approach. In: Proc. SIGMOD, pp. 695–706. ACM (2009)

    Google Scholar 

  16. Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  17. Pǎtraşcu, M.: Succincter. In: Proc. FOCS, pp. 305–313 (2008)

    Google Scholar 

  18. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Alg. 2(4), 43:1–43:25 (2007)

    Google Scholar 

  19. Sadakane, K.: Succinct representations of lcp information and improvements in the compressed suffix arrays. In: Proc. SODA, pp. 225–232 (2002)

    Google Scholar 

  20. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. SODA, pp. 134–149 (2010)

    Google Scholar 

  21. Vuillemin, J.: A unifying look at data structures. Comm. ACM 23(4), 229–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grossi, R., Iacono, J., Navarro, G., Raman, R., Rao, S.S. (2013). Encodings for Range Selection and Top-k Queries. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics