Skip to main content

Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement

  • Conference paper
Algorithms – ESA 2013 (ESA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8125))

Included in the following conference series:

Abstract

An assignment of colours to the vertices of a graph is stable if any two vertices of the same colour have identically coloured neighbourhoods. The goal of colour refinement is to find a stable colouring that uses a minimum number of colours. This is a widely used subroutine for graph isomorphism testing algorithms, since any automorphism needs to be colour preserving. We give an O((m+n)log n) algorithm for finding a canonical version of such a stable colouring, on graphs with n vertices and m edges. We show that no faster algorithm is possible, under some modest assumptions about the type of algorithm, which captures all known colour refinement algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L.: Moderately exponential bound for graph isomorphism. In: Gécseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 34–50. Springer, Heidelberg (1981)

    Google Scholar 

  2. Babai, L., Erdös, P., Selkow, S.: Random graph isomorphism. SIAM Journal on Computing 9, 628–635 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babai, L., Luks, E.: Canonical labeling of graphs. In: Proc. STOC 1983, pp. 171–183 (1983)

    Google Scholar 

  4. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identifications. Combinatorica 12(4), 389–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cardon, A., Crochemore, M.: Partitioning a graph in O(|A|log2|V|). Theoretical Computer Science 19(1), 85–98 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Darga, P., Liffiton, M., Sakallah, K., Markov, I.: Exploiting structure in symmetry detection for CNF. In: Proc. DAG 2004, pp. 530–534 (2004)

    Google Scholar 

  7. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 189–196. Academic Press (1971)

    Google Scholar 

  8. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Proc. ALENEX 2007, pp. 135–149 (2007)

    Google Scholar 

  9. McKay, B.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)

    MathSciNet  Google Scholar 

  10. McKay, B.: Nauty users guide (version 2.4). Computer Science Dept., Australian National University (2007)

    Google Scholar 

  11. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal on Computing 16(6), 973–989 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Piperno, A.: Search space contraction in canonical labeling of graphs. arXiv preprint arXiv:0804.4881v2 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berkholz, C., Bonsma, P., Grohe, M. (2013). Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics