Skip to main content

Advances in Beta-Lactam Antibiotics

  • Chapter
  • First Online:
  • 2372 Accesses

Abstract

The β-lactam antibiotics continue providing health to the world population by virtue of industrial production and discoveries of new molecules with useful activities. Sales of these remarkable compounds, including penicillins, cephalosporins, cefoxitin, monobactams, clavulanic acid, and carbapenems, have reached over $20 billion dollars per year. Strain improvement of the penicillin-producing strains of Penicillium chrysogenum has been truly remarkable, with present strains producing about 100,000 times more penicillin than the original Penicillium notatum of Sir Alexander Fleming. The traditional strain improvement programs based on random mutation and screening in combination with recombinant DNA techniques allowed an impressive β-lactam yield enhancement at industrial scale. A remarkable amount of information has been gathered on the biosynthetic enzymes involved, the pathways of biosynthesis of β-lactams as well as their regulation, and the genomics and proteomics of the producing organisms. The rational metabolic engineering of β-lactam-producing microorganisms has resulted in productivity increments and the design of biosynthetic pathways giving rise to new antibiotics. A legal framework has been developed for the confined manipulation of genetically modified organisms (GMOs). Modern aspects of the processes are discussed in the present review including genetics, molecular biology, metabolic engineering, genomics, and proteomics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adrio JL, Hintermann GA, Demain AL, Piret JM (2002) Construction of hybrid bacterial deacetoxycephalosporin C synthases (expandases) by in vivo homeologous recombination. Enzyme Microb Technol 31:932–940

    CAS  Google Scholar 

  • Alexander DC, Brumlik MJ, Lee L, Jensen SE (2000) Early cephamycin biosynthetic genes are expressed from a polycistronic transcript in Streptomyces clavuligerus. J Bacteriol 182:348–356

    PubMed  CAS  Google Scholar 

  • Alexander DC, Anders CL, Lee L, Jensen SE (2007) pcd mutants of Streptomyces clavuligerus still produce cephamycin C. J Bacteriol 189:5867–5874

    PubMed  CAS  Google Scholar 

  • Banko G, Wolfe S, Demain AL (1986) Cell-free synthesis of delta-(L-alpha-aminoadipyl)-l-cysteine, the first intermediate of penicillin and cephalosporin biosynthesis. Biochem Biophys Res Comm 137:528–535

    PubMed  CAS  Google Scholar 

  • Banko G, Demain AL, Wolfe S (1987) δ-(L-α-aminoadipyl)-L-cysteinyl-d-valine synthetase (ACV synthetase): a multifunctional enzyme with broad substrate specificity for the synthesis of penicillin and cephalosporin precursors. J Am Chem Soc 109:2858–2860

    CAS  Google Scholar 

  • Barredo JL, van Solingen P, Díez B, Alvarez E, Cantoral JM, Kattevilder A, Smaal EB, Groenen MAM, Veenstra AE, Martín JF (1989a) Cloning and characterization of the acyl-Coenzyme A: 6-aminopenicillanic acid acyltransferase gene of Penicillium chrysogenum. Gene 83:291–300

    PubMed  CAS  Google Scholar 

  • Barredo JL, Díez B, Alvarez E, Martín JF (1989b) Large amplification of a 35 kb DNA fragment carrying two penicillin biosynthetic genes in high pencillin producing strains of Penicillium chrysogenum. Curr Genet 16:453–459

    PubMed  CAS  Google Scholar 

  • Barreiro C, Pisabarro A, Martín JF (2000) Characterization of the ribosomal rrnD operon of the cephamycin-producer Nocardia lactamdurans shows that this actinomycete belongs to the genus Amycolatopsis. Syst Appl Microbiol 23:15–24

    PubMed  CAS  Google Scholar 

  • Barreiro C, Martín JF, García-Estrada C (2012) Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J Biomed Biotechnol 2012:105109

    PubMed  Google Scholar 

  • Bartoszewska M, Kiel JA, Bovenberg RA, Veenhuis M, van der Klei IJ (2011) Autophagy deficiency promotes beta-lactam production in Penicillium chrysogenum. Appl Environ Microbiol 77:1413–1422

    PubMed  CAS  Google Scholar 

  • Basch J, Franceschini T, Tonzi S (2004) Chiang S.-JD. Expression of a cephalosporin C esterase gene in Acremonium chrysogenum for the direct production of deacetylcephalosporin C. J Ind Microbiol Biotechnol 31:531–539

    PubMed  CAS  Google Scholar 

  • Cardoza RE, Velasco J, Martín JF, Liras P (2000) A cephalosporin C acetylhydrolase is present in the cultures of Nocardia lactamdurans. Appl Microbiol Biotechnol 54:406–412

    PubMed  CAS  Google Scholar 

  • Casqueiro J, Gutierez S, Banuelos O, Hijarrubia MJ, Martín JF (1999) Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188

    PubMed  CAS  Google Scholar 

  • Chary VK, de la Fuente JL, Leitao AL, Liras P, Martín JF (2000) Overexpression of the lat gene in Nocardia lactamdurans from strong heterologous promoters results in very high levels of lysine-6-aminotransferase and up to two-fold increase in cephamycin C production. Appl Microbiol Biotechnol 53:282–288

    PubMed  CAS  Google Scholar 

  • Chin HS, Sim TS (2002) C-terminus modification of Streptomyces clavuligerus deacetoxycephalosporin C synthase improves catalysis with an expanded substrate specificity. Biochem Biophys Res Commun 295:55–61

    PubMed  CAS  Google Scholar 

  • Chin HS, Sim J, Sim TS (2001) Mutation of N304 to leucine in Streptomyces clavuligerus deacetoxycephalosporin C synthase creates an enzyme with increased penicillin analogue conversion. Biochem Biophys Res Commun 287:507–513

    PubMed  CAS  Google Scholar 

  • Chin HS, Goo KS, Sim TS (2004) A complete library of amino acid alterations at N304 in Streptomyces clavuligerus deacetoxycephalosporin C synthase elucidates the basis for enhanced penicillin analogue conversion. Appl Environ Microbiol 70:607–609

    PubMed  CAS  Google Scholar 

  • Christensen B, Thykaer J, Nielsen J (2000) Metabolic characterization of high- and low-yielding strains of Penicillium chrysogenum. Appl Microbiol Biotechnol 54:212–217

    PubMed  CAS  Google Scholar 

  • Coque JJR, Martín JF, Liras P (1993) Characterization and expression in Streptomyces lividans of cefD and cefE genes from Nocardia lactamdurans: the organization of the cephamycin gene cluster differs from that in Streptomyces clavuligerus. Mol Gen Genet 236:453–458

    PubMed  CAS  Google Scholar 

  • Demain AL, Elander RP (1999) The β-lactam antibiotics: past, present and future. Ant v Leeuw 75:5–19

    CAS  Google Scholar 

  • Dotzlaf J, Yeh WK (1987) Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J Bacteriol 169:1611–1618

    PubMed  CAS  Google Scholar 

  • Dotzlaf J, Yek WK (1989) Purification and properties of deacetoxycephalosporin C synthase from recombinant Escherichia coli and its comparison with the native enzyme purified from Streptomyces clavuligerus. J Biol Chem 264:10219–10227

    PubMed  CAS  Google Scholar 

  • Dreyer J, Eichhorn H, Friedlin E, Kurnsteiner H, Kuck U (2007) A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol 73:3412–3422

    PubMed  CAS  Google Scholar 

  • Elander RP (2002) University of Wisconsin contributions to the early development of penicillin and cephalosporin antibiotics. SIM News 52:270–278

    Google Scholar 

  • Elander RP (2003) Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol 61:385–392

    PubMed  CAS  Google Scholar 

  • Evers ME, Trip H, van den Berg MA, Bovenberg RA, Driessen AJ (2004) Compartmentalization and transport in beta-lactam antibiotic biosynthesis. Adv Biochem Eng Biotechnol 88:111–135

    PubMed  CAS  Google Scholar 

  • Felix HR, Peter HH, Treichler HJ (1981) Microbiological ring expansion of penicillin N. J Antibiot 34:567–575

    PubMed  CAS  Google Scholar 

  • Fernández FJ, Cardoza RE, Montenegro E, Velasco J, Gutiérrez S, Martín JF (2003) The IPN acyltransferases of Aspergillus nidulans and Penicillium chrysogenum differ in their ability to maintain the 40 kDa alpha beta heterodimer in an undissociated form. Eur J Biochem 270:1958–1968

    PubMed  Google Scholar 

  • Fierro F, Barredo JL, Díez B, Gutiérrez S, Fernández FJ, Martín JF (1995) The penicillin biosynthetic gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92:6200–6204

    PubMed  CAS  Google Scholar 

  • Fierro F, Montenegro E, Gutiérrez S, Martín JF (1996) Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin biosynthetic gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol 44:597–604

    PubMed  CAS  Google Scholar 

  • Fierro F, García-Estrada C, Castillo NI, Rodríguez R, Velasco-Conde T, Martín JF (2006) Transcriptional and bioinformatics analysis of the 58.6 kb DNA region amplified in tandem repeats containg the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet Biol 43:618–629

    PubMed  CAS  Google Scholar 

  • Fleming A (1929) On the antibacterial action of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  • Gao Q, Piret JM, Adrio JL, Demain AL (2003) Performance of a recombinant strain of Streptomyces lividans for bioconversion of penicillin G to deacetoxycephalosporin G. J Ind Microbiol Biotechnol 30:190–194

    PubMed  CAS  Google Scholar 

  • García-Estrada C, Ullán RV, Velasco-Conde T, Godio RP, Teijeira F, Vaca I et al (2008) Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. Biochem J 415:317–324

    PubMed  Google Scholar 

  • Gombert AK, Veiga T, Puig-Martinez M, Lamboo F, Nijland JG, Driessen AJM et al (2011) Functional characterization of the oxaloacetase encoding gene and elimination of oxalate formation in the β-lactam producer Penicillium chrysogenum. Fungal Genet Biol 48:831–839

    PubMed  CAS  Google Scholar 

  • Goo KS, Chua CS, Sim TS (2008a) A complete library of amino acid alterations at R306 in Streptomyces clavuligerus deacetoxycephalosporin C synthase demonstrates its structural role in the ring-expansion activity. Proteins 70:739–747

    CAS  Google Scholar 

  • Goo KS, Chua CS, Sim TS (2008b) Relevant double mutations in bioengineered Streptomyces clavuligerus deacetoxycephalosporin C synthase result in higher binding specificities which improve penicillin bioconversion. Appl Environ Microbiol 74:1167–1175

    PubMed  CAS  Google Scholar 

  • Goo KS, Chua CS, Sim TS (2009) Directed evolution and rational approaches to improving Streptomyces clavuligerus deacetoxycephalosporin C synthase for cephalosporin production. J Ind Microbiol Biotechnol 36:619–633

    PubMed  CAS  Google Scholar 

  • Gutiérrez S, Díez B, Montenegro E, Martín JF (1991) Characterization of the Cephalosporium acremonium pcbAB gene encoding α-aminoadipylcysteinylvaline synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin-biosynthetic genes and evidence of multiple functional domains. J Bacteriol 173:2354–2365

    PubMed  Google Scholar 

  • Gutiérrez S, Velasco J, Fernández FJ, Martín JF (1992) The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin acyltransferase closely related to homoserine-O-acetyltransferase. J Bacteriol 174:3056–3064

    PubMed  Google Scholar 

  • Gutiérrez S, Marcos AT, Casqueiro J, Kosalkova K, Fernández FJ, Velasco J et al (1999a) Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. Microbiology 145:317–324

    PubMed  Google Scholar 

  • Gutiérrez S, Fierro F, Casqueiro J, Martín JF (1999b) Gene organization and plasticity of the beta-lactam genes in different filamentous fungi. Ant v Leeuw 75:81–94

    Google Scholar 

  • Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA et al (2009a) Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillin G production. BMC Genomics 10:75

    PubMed  Google Scholar 

  • Harris DM, Westerlaken I, Schipper D, van der Krogt ZA, Gombert AK, Sutherland J et al (2009b) Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. Metab Eng 11:12–37

    Google Scholar 

  • Hoff B, Kamerewerd J, Sigl C, Zadra I, Kück U (2010) Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain Δpcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 85:1081–1094

    PubMed  CAS  Google Scholar 

  • Hollander IJ, Shen YQ, Heim J, Demain AL (1984) A pure enzyme catalyzing penicillin biosyntesis. Science 224:610–612

    PubMed  CAS  Google Scholar 

  • Hsu JS, Yang YB, Deng CH, Wei CL, Liaw SH, Tsai YC (2004) Family shuffling of expandase genes to enhance substrate specificity for penicillin G. Appl Environ Microb 70:6257–6263

    CAS  Google Scholar 

  • Jami MS, Barreiro C, García-Estrada C, Martín JF (2010a) Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics 9:1182–1198

    PubMed  CAS  Google Scholar 

  • Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF (2010b) The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 9:2729–2744

    PubMed  CAS  Google Scholar 

  • Janus D, Hoff B, Hofmann E, Kück U (2007) An efficient fungal RNA-silencing system using the DsRed reporter gene. Appl Environ Microbiol 73:962–970

    PubMed  CAS  Google Scholar 

  • Janus D, Hoff B, Kück U (2009) Evidence for Dicer-dependent RNA interference in the industrial penicillin producer Penicillium chrysogenum. Microbiology 155:3946–3956

    PubMed  CAS  Google Scholar 

  • Kiel JA, van der Klei IJ, van den Berg MA, Bovenberg RA, Veenhuis M (2005) Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet Biol 42:154–164

    PubMed  CAS  Google Scholar 

  • Kiel JAKW, van den Berg MA, Fusetti F, Poolman B, Bovenberg RAL, Veenhuis M et al (2009) Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells. Funct Integr Genomics 9:167–184

    PubMed  CAS  Google Scholar 

  • Kim CF, Lee SKY, Price J, Jack RW, Turner G, Kong RYC (2003) Cloning and expression analysis of the pcbAB-pcbC β-lactam genes in the marine fungus Kallichroma tethys. Appl Environ Microbiol 69:1308–1314

    PubMed  CAS  Google Scholar 

  • Kimura H, Miyashita H, Sumino Y (1996) Organization and expression in Pseudomonas putida of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus. Appl Microbiol Biotechnol 45:490–501

    PubMed  CAS  Google Scholar 

  • Koetsier MJ, Gombert AK, Fekken S, Bovenberg RA, van den Berg MA, Kiel JA et al (2010) The Penicillium chrysogenum aclA gene encodes a broad-substrate-specificity acyl-coenzyme a ligase involved in activation of adipic acid, a side-chain precursor for cephem antibiotics. Fungal Genet Biol 47:33–42

    PubMed  CAS  Google Scholar 

  • Kohsaka M, Demain AL (1976) Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem Biophys Res Commun 70:465–473

    PubMed  CAS  Google Scholar 

  • Komatsua M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107:2646–2651

    Google Scholar 

  • Kosalkova K, Marcos AT, Fierro F, Hernando-Rico V, Gutiérrez S, Martín JF (2000) A novel heptameric sequence is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 275:2423–2430

    PubMed  CAS  Google Scholar 

  • Kovacevic S, Miller JR (1991) Cloning and sequencing of the beta-lactam hydroxylase gene (cefF) from Streptomyces clavuligerus: gene duplication may have led to separate hydroxylase and expandase activities in the actinomycetes. J Bacteriol 173:398–400

    PubMed  CAS  Google Scholar 

  • Kovacevic S, Weigel BJ, Tobin MB, Ingolia TD, Miller JR (1989) Cloning, characterization and expression of the Streptomyces clavuligerus gene encoding deacetoxycephalosporin C synthase. J Bacteriol 171:754–760

    PubMed  CAS  Google Scholar 

  • Kovacevic S, Tobin MB, Miller JR (1990) The β-lactam biosynthesis genes for IPN epimerase and deacetoxycephalosporin C synthase are expressed from a single transcript in Streptomyces clavuligerus. J Bacteriol 172:3952–3958

    PubMed  CAS  Google Scholar 

  • Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62

    PubMed  Google Scholar 

  • Lee HJ, Lloyd MD, Harlos K, Schofield CJ (2000) The effect of cysteine mutations on recombinant deacetoxycephalosporin C synthase from S. clavuligerus. Biochem Biophys Res Commun 267:445–448

    PubMed  CAS  Google Scholar 

  • Lee HJ, Lloyd MD, Harlos K, Clifton IJ, Baldwin JE, Schofield CJ (2001a) Kinetic and crystallographic studies on deacetoxycephalosporin C synthase (DAOCS). J Mol Biol 308:937–948

    PubMed  CAS  Google Scholar 

  • Lee HJ, Lloyd MD, Clifton IJ, Harlos K, Dubus A, Baldwin JE et al (2001b) Alteration of the co-substrate selectivity of deacetoxycephalosporin C synthase. The role of arginine 258. J Biol Chem 276:18290–18295

    PubMed  CAS  Google Scholar 

  • Li L, Chang SS, Liu Y (2010) RNA interference pathways in filamentous fungi. Cell Mol Life Sci 67:3849–3863

    PubMed  CAS  Google Scholar 

  • Lipscomb SJ, Lee HJ, Mukherji M, Baldwin JE, Schofield CJ, Lloyd MD (2002) The role of arginine residues in substrate binding and catalysis by deacetoxycephalosporin C synthase. Eur J Biochem 269:2735–2739

    PubMed  CAS  Google Scholar 

  • Liras P, Martín JF (2006) Gene clusters for β-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate? Int Microbiol 9:9–19

    PubMed  CAS  Google Scholar 

  • Liras P, Gómez-Escribano JP, Santamarta I (2008) Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 35:667–676

    PubMed  CAS  Google Scholar 

  • Liu G, Casqueiro J, Bañuelos O, Cardoza RE, Gutiérrez S, Martín JF (2001) Targeted inactivation of the mecB gene, encoding cystathionine-γ-lyase shows that the reverse transsulfuration pathway is required for high-level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine induction of the cephalosporin genes. J Bacteriol 183:1765–1772

    PubMed  CAS  Google Scholar 

  • Liu Y, Gong GH, Xie LH, Yuan N, Zhu CB, Zhu BQ et al (2010) Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum. Mol Biotechnol 4:101–109

    Google Scholar 

  • Lloyd MD, Lee HJ, Harlos K, Zhang ZH, Baldwin JE (1999) Schofield et al. Studies on the active site of deacetoxycephalosporin C synthase. J Mol Biol 287:943–960

    PubMed  CAS  Google Scholar 

  • Martín JF, Gutiérrez S, Fernández FJ, Velasco J, Fierro F, Marcos AT, Kosalkova K (1994) Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins. Ant v Leeuw 65:227–243

    Google Scholar 

  • Martín JF, Ullán RV, Casqueiro J (2004) Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Adv Biochem Eng Biotechnol 88:91–109

    PubMed  Google Scholar 

  • Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293

    PubMed  Google Scholar 

  • Martín JF, Ullán RV, García-Estrada C (2010) Regulation and compartmentalization of β-lactam biosynthesis. Microb Biotechnol 3:285–299

    PubMed  Google Scholar 

  • Mathison L, Soliday C, Stepan T, Aldrich T, Rambosek J (1993) Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyltransferase. Curr Genet 23:33–41

    PubMed  CAS  Google Scholar 

  • Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R et al (2010) Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microb 76:5702–5709

    CAS  Google Scholar 

  • Mingot JM, Peñalva MA, Fernández-Canon JM (1999) Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J Biol Chem 274:14545–14550

    PubMed  CAS  Google Scholar 

  • Nasution U, van Gulik WM, Ras C, Proell A, Heijnen JJ (2008) A metabolome study of the steady-state relation between central metabolism, amino acid biosynthesis and penicillin production in Penicillium chrysogenum. Metab Eng 10:10–23

    PubMed  CAS  Google Scholar 

  • Newbert RW, Barton B, Greaves P, Harper J, Turner G (1997) Analysis of a commercially improved Penicillium chrysogenum strain series; involvement of recombinogenic regions in amplification and deletion of the penicillin gene cluster. J Ind Microbiol Biotechnol 19:18–27

    PubMed  CAS  Google Scholar 

  • Nijland JG, Kovalchuk A, van den Berg MA, Bovenberg RAL, Driessen AJM (2008) Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet Biol 45:1415–1421

    PubMed  CAS  Google Scholar 

  • Nijland JG, Ebbendorf B, Woszczynska M, Remon B, Bovenberg RAL, Driessen AJM (2010) Nonlinear biosynthetic gene cluster dose effect on penicillin production by Penicillium chrysogenum. Appl Environ Microbiol 76:7109–7115

    PubMed  CAS  Google Scholar 

  • Ozcengiz G, Demain AL (2013) Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 31:287–311

    PubMed  CAS  Google Scholar 

  • Ozcengiz G, Okay S, Unsaldı E, Taskın B, Liras P, Piret J (2010) Homologous expression of aspartokinase (ask) gene in Streptomyces clavuligerus and its hom-deleted mutant: effects on cephamycin C production. Bioeng Bugs 1:1–7

    Google Scholar 

  • Queener SW, Ingolia TD, Skatrud PL, Chapman JL, Kaster KR (1985) A system for genetic transformation of Cephalosporium acremonium. In: Lieve L (ed) Microbiology-1985. American Society for Microbiology, Washington D.C., pp 468–472

    Google Scholar 

  • Rodríguez-Sáiz M, Barredo JL, Moreno MA, Fernández-Cañón JM, Peñalva MA, Díez B (2001) Reduced function of a phenylacetate-oxidizing cytochrome P450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. J Bacteriol 183:5465–5471

    PubMed  Google Scholar 

  • Rodríguez-Sáiz M, Lembo M, Bertetti L, Muraca R, Velasco J, Malcangi A et al (2004a) Strain improvement for cephalosporin production by Acremonium chrysogenum using geneticin as a suitable transformation marker. FEMS Microbiol Lett 235:43–49

    PubMed  Google Scholar 

  • Rodríguez-Sáiz M, de la Fuente JL, Barredo JL (2004b) Methods in biotechnology. In: Barredo JL (ed) Microbial processes and products, vol 18. Humana Press Inc., Totowa, NJ, pp 41–64

    Google Scholar 

  • Rodríguez-Sáiz M, Díez B, Barredo JL (2005) Why did the Fleming strain fail in the penicillin industry? Fungal Genet Biol 42:464–470

    PubMed  Google Scholar 

  • Rokem JS, Lantz AE, Nielsen J (2007) Systems biology of antibiotic production by microorganisms. Nat Prod Rep 24:1262–1287

    PubMed  CAS  Google Scholar 

  • Salame TM, Ziv C, Hadar Y, Yarden O (2011) RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 89:501–512

    PubMed  CAS  Google Scholar 

  • Samson SM, Dotzlaf J, Slisz ML, Becker GW, Van-Frank RM, Veal LE, Yeh WK, Miller JE, Queener SW, Ingolia TD (1987) Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Bio/Technology 5:1207–1214

    CAS  Google Scholar 

  • Sawada Y, Baldwin JE, Singh PD, Solomon NA, Demain AL (1980) Cell-free cyclization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-d-valine to isopenicillin N. Antimicrob Ag Chemother 18:465–470

    CAS  Google Scholar 

  • Scheidegger A, Kuenzi MT, Nüesch J (1984) Partial purification and catalytic properties of a bifunctional enzyme in the biosynthetic pathway of beta-lactams in Cephalosporium acremonium. J Antibiot 37:522–531

    PubMed  CAS  Google Scholar 

  • Schmitt EK, Kempken R, Kück U (2001) Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chrysogenum: specific DNA–protein interactions and characterization of the transcription factor PACC. Mol Genet Genomics 265:508–518

    PubMed  CAS  Google Scholar 

  • Schmitt EK, Bunse A, Janus D, Hoff B, Friedlin E, Kurnsteiner H et al (2004a) Winged helix transcription factor CPCR1 is involved in regulation of β-lactam biosynthesis in the fungus Acremonium chrysogenum. Eukaryot Cell 3:121–134

    PubMed  CAS  Google Scholar 

  • Schmitt EK, Hoff B, Kück U (2004b) AcFKH1, a novel member of the forkhead family, associates with the RFX transcription factor CPCR1 in the cephalosporin C-producing fungus Acremonium chrysogenum. Gene 342:269–281

    PubMed  CAS  Google Scholar 

  • Seidel G, Tollnick C, Beyer M, Schurgerl K (2002) Process engineering aspects of the production of cephalosporin C by Acremonium chrysogenum Part II. Cultivation in diluted and enriched complex media. Proc Biochem 38:241–248

    CAS  Google Scholar 

  • Sim J, Sim T-S (2000) Mutational evidence supporting the involvement of tripartite residues his183, asp185, and his243 in Streptomyces clavuligerus deacetoxycephalosporin C synthase for catalysis. Biosci Biotechnol Biochem 64:828–832

    PubMed  CAS  Google Scholar 

  • Skatrud PL, Queener SW (1989) An electrophoretic molecular karyotype for an industral strain of Cephalosporium acremonium. Gene 78:331–338

    PubMed  CAS  Google Scholar 

  • Smith DJ, Bull JH, Edwards J, Turner G (1989) Amplification of the IPN synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet 216:492–497

    PubMed  CAS  Google Scholar 

  • Snoek ISI, van der Krogt ZA, Touw H, Kerkman R, Pronk JT, Bovenberg RAL et al (2009) Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 46:418–426

    PubMed  CAS  Google Scholar 

  • Sohn YS, Nam DH, Ryu DD (2001) Biosynthetic pathway of cephabacins in Lysobacter lactamgenus: molecular and biochemical characterization of the upstream region of the gene clusters for engineering of novel antibiotics. Metab Eng 3:380–392

    PubMed  CAS  Google Scholar 

  • Sonawane VC (2006) Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit Rev Biotechnol 26:95–120

    PubMed  CAS  Google Scholar 

  • Sprote P, Brakhage AA, Hynes MJ (2009) Contribution of peroxisomes to penicillin biosynthesis in Aspergillus nidulans. Eukaryot Cell 8:421–423

    PubMed  Google Scholar 

  • Teijeira F, Ullán RV, Guerra SM, García-Estrada C, Vaca I, Martín JF (2009) The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J 418:113–124

    PubMed  CAS  Google Scholar 

  • Teijeira F, Ullán RV, Fernández-Aguado M, Martín JF (2011) CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab Eng 13:532–543

    PubMed  CAS  Google Scholar 

  • Theilgaard H, van den Berg M, Mulder C, Bovenberg RJ, Nielsen J (2001) Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 72:379–388

    PubMed  CAS  Google Scholar 

  • Thykaer J, Nielsen J (2003) Metabolic engineering of beta-lactam production. Metab Eng 5:56–69

    PubMed  CAS  Google Scholar 

  • Ullán RV, Casqueiro J, Banuelos O, Fernández FJ, Gutiérrez S, Martín JF (2002a) A novel epimerization system in fungal secondary metabolism involved in the conversion of IPN into penicillin N in Acremonium chrysogenum. J Biol Chem 277:4621–4625

    Google Scholar 

  • Ullán RV, Liu G, Casqueiro J, Gutiérrez S, Banuelos O, Martín JF (2002b) The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics 267:673–683

    PubMed  Google Scholar 

  • Ullán RV, Casquerio J, Naranjo J, Vaca I, Martín JF (2004) Expression of cefD2 and conversion of IPN into penicillin N by the two-component epimerase system are rate-limiting steps in cephalosporin biosynthesis. Mol Genet Genomics 272:562–570

    PubMed  Google Scholar 

  • Ullán RV, Campoy S, Casqueiro J, Fernández FJ, Martín JF (2007) Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the IPN epimerization, ring expansion, and acetylation genes. Chem Biol 14:329–339

    PubMed  Google Scholar 

  • Ullán RV, Godio RP, Teijeira F, Vaca I, García-Estrada C, Feltrer R et al (2008a) RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam gene expression. J Microbiol Meth 75:209–218

    Google Scholar 

  • Ullán RV, Teijeira F, Martín JF (2008b) Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes a hydrophilic beta-lactam transporter. Curr Genet 54:153–161

    PubMed  Google Scholar 

  • Ullán RV, Teijeira F, Guerra SM, Vaca I, Martín JF (2010) Characterization of a novel peroxisome membrane protein essential for conversion of IPN into cephalosporin C. Biochem J 432:227–236

    PubMed  Google Scholar 

  • Valegård K, Anke C, van Scheltinga ACT, Lloyd MD, Hara T, Ramaswamy S et al (1998) Structure of a cephalosporin synthase. Nature 394:805–809

    PubMed  Google Scholar 

  • van de Kamp M, Driessen AJ, Konings WN (1999) Compartmentalization and transport in beta-lactam antibiotic biosynthesis by filamentous fungi. Ant v Leeuw 75:41–78

    Google Scholar 

  • van den Berg MA (2010) Functional characterization of penicillin production strains. Fungal Biol Rev 24:73–78

    Google Scholar 

  • van den Berg MA (2011) Impact of the Penicillium chrysogenum genome on industrial production of metabolites. Appl Microbiol Biotechnol 92:45–53

    PubMed  CAS  Google Scholar 

  • van den Berg MA, Westerlaken I, Leeflang C, Kerkman R, Bovenberg RA (2007) Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin 54–1255. Fungal Genet Biol 44:830–844

    PubMed  Google Scholar 

  • van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ et al (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168

    PubMed  CAS  Google Scholar 

  • van der Lende TR, van de Kamp M, Berg M, Sjollema K, Bovenberg RAL, Veenhuis M et al (2002) Delta-(L-alpha aminoadipyl)-L-cysteinyl-d-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol 37:49–55

    PubMed  Google Scholar 

  • van Gulik WM, de Laat W, Vinke JL, Heijnen JJ (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng 68:602–618

    PubMed  Google Scholar 

  • van Gulik WM, Antoniewicz MR, deLaat WTAM, Vinke JL, Heijnen JJ (2001) Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum. Biotechnol Bioeng 72:185–193

    Google Scholar 

  • Velasco J, Gutiérrez S, Campoy S, Martín JF (1999) Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochem J 337:379–385

    PubMed  CAS  Google Scholar 

  • Velasco J, Adrio JL, Moreno MA, Díez B, Soler G, Barredo JL (2000) Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nat Biotechnol 18:857–861

    PubMed  CAS  Google Scholar 

  • Walz M, Kück U (1991) Polymorphic karyotypes in related Acremonium strains. Curr Genet 19:73–76

    PubMed  CAS  Google Scholar 

  • Wang FQ, Zhao Y, Dai M, Liu J, Zheng GZ, Ren ZH et al (2008) Cloning and functional identification of C-4 methyl sterol oxidase genes from the penicillin-producing fungus Penicillium chrysogenum. FEMS Microbiol Lett 287:91–99

    PubMed  CAS  Google Scholar 

  • Wei CL, Yang YB, Wang WC, Liu WC, Hsu JS, Tsa YC (2003) Engineering Streptomyces clavuligerus deacetoxycephalosporin C synthase for optimal ring expansion activity toward penicillin G. Appl Environ Microbiol 69:2306–2312

    PubMed  CAS  Google Scholar 

  • Wei CL, Yang YB, Deng CH, Liu WC, Hsu JS, Lin YC et al (2005) Directed evolution of Streptomyces clavuligerus deacetoxycephalosporin C synthase for enhancement of penicillin G expansion. Appl Environ Microbiol 71:8873–8880

    PubMed  CAS  Google Scholar 

  • Wu X-B, Fan K-Q, Wang Q-H, Yang K-Q (2005) C-terminus mutations of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase with improved activity toward penicillin analogs. FEMS Microbiol Lett 246:103–110

    PubMed  CAS  Google Scholar 

  • Wu XB, Tian XY, Ji JJ, Wu WB, Fan K-Q, Yang K-Q (2011) Saturation mutagenesis of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase R308 site confirms its role in controlling substrate specificity. Biotechnol Lett 33:805–812

    PubMed  CAS  Google Scholar 

  • Wu X, García-Estrada C, Vaca I, Martín JF (2012) Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation. Biochimie 94:354–364

    PubMed  CAS  Google Scholar 

  • Yilmaz EI, Caydasi AK, Ozcengiz G (2008) Targeted disruption of homoserine dehydrogenase gene and its effect on cephamycin C production in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 35:1–7

    PubMed  CAS  Google Scholar 

  • Zhang J, Demain AL (1990) Purification from Cephalosporium acremonium of the initial enzyme unique to the biosynthesis of penicillins and cephalosporins. Biochem Biophys Res Comm 169:1145–1152

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Luis Barredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barredo, JL., Ozcengiz, G., Demain, A.L. (2014). Advances in Beta-Lactam Antibiotics. In: Villa, T., Veiga-Crespo, P. (eds) Antimicrobial Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40444-3_5

Download citation

Publish with us

Policies and ethics