Skip to main content

New Antimicrobial Agents of Plant Origin

  • Chapter
  • First Online:
Antimicrobial Compounds

Abstract

Plants are constantly under attack by microbial pathogens. As part of their defensive arsenal, they use antimicrobial peptides such as thionins, defensins, lipid transfer proteins, hevein-like peptides, knottins, cyclotides, β-barrelins, and others. In addition, they produce a diversity of antimicrobial metabolites. Those where the evidence for a role in plant defense is stronger include benzoxazinoids, camalexin, and glucosinolates among the alkaloids; flavonoids and stilbenes among the phenylpropanoids; and also terpenoids such as saponins. Our understanding of these plant antimicrobial agents has increased significantly in recent years with new information on their distribution, synthesis, regulation, in vivo function, and mechanism of action. Plant antimicrobial agents have a large potential for biotechnological applications. Engineered plants with increased disease resistance have been achieved using almost every family of antimicrobial peptides. There have been also been successes in using metabolic engineering to increase the production of antimicrobial compounds, as in the case of stilbenes and glucosinolates. Commercial applications using both approaches are likely to appear soon. The use of plant antimicrobials in human medicine is probably further in the future, although there are promising antifungal agents like defensin peptides, and saponins. With more than a quarter million species and a particularly diverse specialized metabolism, the richness of plant antimicrobials has barely been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Plattner S, Shah K, Bohlmann H (2013) Comparison of periplasmic and intracellular expression of Arabidopsis thionin proproteins in E. coli. Biotechnol Lett 35:1085–1091

    Google Scholar 

  • Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45

    PubMed  CAS  Google Scholar 

  • Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L, Glauser Gt, Erb M, Flors V, Frey M, Ton J (2011) Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol 157:317–327

    PubMed  CAS  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    PubMed  CAS  Google Scholar 

  • Aires A, Mota VR, Saavedra MJ, Monteiro AA, Simões M, Rosa EAS, Bennett RN (2009) Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J Appl Microbiol 106:2096–2105

    PubMed  CAS  Google Scholar 

  • Almasia NI, Bazzini AA, Hopp HE, Vazquez-Rovere C (2008) Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol 9:329–338

    PubMed  CAS  Google Scholar 

  • Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457

    PubMed  CAS  Google Scholar 

  • Balaji V, Smart C (2012) Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res 21:23–37

    PubMed  CAS  Google Scholar 

  • Balls AK, Halle WS, Harris TH (1942) A crystalline protein obtained from lipoprotein of wheat flour. Cereal Chem 19:279–281

    CAS  Google Scholar 

  • Bednarek P (2012) Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity. ChemBioChem 13:1846–1859

    PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A, Rodríguez-Palenzuela P, García-Olmedo F, Rivas L (2009) Leishmania donovani: Thionins, plant antimicrobial peptides with leishmanicidal activity. Exp Parasitol 122:247–249

    PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Segura A, Moreno M, López G, García-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961

    PubMed  CAS  Google Scholar 

  • Bolle M, Eggermont K, Duncan R, Osborn R, Terras F, Broekaert W (1995) Cloning and characterization of two cDNA clones encoding seed-specific antimicrobial peptides from Mirabilis jalapa L. Plant Mol Biol 28:713–721

    PubMed  Google Scholar 

  • Boutrot F, Chantret N, Gautier MF (2008) Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9:86

    PubMed  Google Scholar 

  • Brader G, Mikkelsen MD, Halkier BA, Tapio Palva E (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J 46:758–767

    PubMed  CAS  Google Scholar 

  • Bravo HcR, Copaja SV, Lazo W (1997) Antimicrobial activity of natural 2-benzoxazolinones and related derivatives. J Agric Food Chem 45:3255–3257

    CAS  Google Scholar 

  • Brown KK, Hampton MB (2011) Biological targets of isothiocyanates. Biochim Biophy Acta 1810:888–894

    Google Scholar 

  • Cammue BP, De Bolle MF, Terras FR, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J Biol Chem 267:2228–2233

    PubMed  CAS  Google Scholar 

  • Cammue BPA, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC, Broekaert WF (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109:445–455

    PubMed  CAS  Google Scholar 

  • Canales J, Avila C, Cánovas FM (2011) A maritime pine antimicrobial peptide involved in ammonium nutrition. Plant, Cell Environ 34:1443–1453

    CAS  Google Scholar 

  • Carvalho AdO, Gomes VM (2007) Role of plant lipid transfer proteins in plant cell physiology—A concise review. Peptides 28:1144–1153

    CAS  Google Scholar 

  • Carvalho AdO, Gomes VM (2011) Plant defensins and defensin-like peptides—biological activities and biotechnological applications. Curr Pharm Des 17:4270–4293

    CAS  Google Scholar 

  • Castro MS, Fontes W (2005) Plant defense and antimicrobial peptides. Protein Pept Lett 12:11–16

    Google Scholar 

  • Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–555

    PubMed  Google Scholar 

  • Chen Z, Posch A, Lohaus C, Raulf-Heimsoth M, Meyer HE, Baur X (1997) Isolation and identification of hevein as a major IgE-binding polypeptide in Hevea latex. J Allergy Clin Immunol 99:402–406

    PubMed  CAS  Google Scholar 

  • Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155

    CAS  Google Scholar 

  • Choon Koo J, Jin Chun H, Cheol Park H, Chul Kim M, Duck Koo Y, Cheol Koo S, Mi Ok H, Jeong Park S, Lee SH, Yun DJ, Oh Lim C, Dong Bahk J, Yeol Lee S, Cho M (2002) Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol Biol 50:441–452

    Google Scholar 

  • Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR, Mylonakis E (2010) Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol 5:321–332

    PubMed  CAS  Google Scholar 

  • Colilla FJ, Rocher A, Mendez E (1990) γ-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett 270:191–194

    PubMed  CAS  Google Scholar 

  • Collinge DB, Jørgensen HJL, Lund OS, Lyngkjær MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    PubMed  CAS  Google Scholar 

  • Conlan BF, Gillon AD, Barbeta BL, Anderson MA (2011) Subcellular targeting and biosynthesis of cyclotides in plant cells. Am J Bot 98:2018–2026

    PubMed  CAS  Google Scholar 

  • Coulon A, Berkane E, Sautereau AM, Urech K, Rougé P, Lopez A (2002) Modes of membrane interaction of a natural cysteine-rich peptide: viscotoxin A3. Biochim Biophys Acta 1559:145–159

    PubMed  CAS  Google Scholar 

  • Craik DJ (2009) Circling the enemy: cyclic proteins in plant defence. Trends Plant Sci 14:328–335

    PubMed  CAS  Google Scholar 

  • Cushnie TPT, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38:99–107

    PubMed  CAS  Google Scholar 

  • Dadi PK, Ahmad M, Ahmad Z (2009) Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Int J Biol Macromol 45:72–79

    PubMed  CAS  Google Scholar 

  • Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181

    PubMed  CAS  Google Scholar 

  • De Coninck B, Cammue BPA, Thevissen K (2013) Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biol Rev 26:109–120

    Google Scholar 

  • DeBono A, Yeats TH, Rose JKC, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell Online 21:1230–1238

    CAS  Google Scholar 

  • Dick R, Rattei T, Haslbeck M, Schwab W, Gierl A, Frey M (2012) Comparative analysis of benzoxazinoid biosynthesis in monocots and dicots: independent recruitment of stabilization and activation functions. Plant Cell Online 24:915–928

    CAS  Google Scholar 

  • Dixon DP, Sellars JD, Kenwright AM, Steel PG (2012) The maize benzoxazinone DIMBOA reacts with glutathione and other thiols to form spirocyclic adducts. Phytochemistry 77:171–178

    PubMed  CAS  Google Scholar 

  • Du H, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86:1293–1312

    PubMed  CAS  Google Scholar 

  • Duvick JP, Rood T, Rao AG, Marshak DR (1992) Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem 267:18814–18820

    PubMed  CAS  Google Scholar 

  • Egger M, Hauser M, Mari A, Ferreira F, Gadermaier G (2010) The Role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep 10:326–335

    PubMed  CAS  Google Scholar 

  • Egorov T, Odintsova TI (2012) Defense peptides of plant immunity. Russ J Bioorg Chem 38:1–9

    CAS  Google Scholar 

  • Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV (2005) Diversity of wheat anti-microbial peptides. Peptides 26:2064–2073

    PubMed  CAS  Google Scholar 

  • El Oirdi M, Trapani A, Bouarab K (2010) The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen. Environ Microbiol 12:239–253

    PubMed  Google Scholar 

  • Falcone Ferreyra ML, Rius S, Casati P (2012) Flavonoids: biosynthesis, biological functions and biotechnological applications. Front Plant Sci 3:222

    Google Scholar 

  • Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A (2009) Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70:1645–1651

    PubMed  CAS  Google Scholar 

  • Fujimura M, Ideguchi M, Minami Y, Watanabe K, Tadera K (2005) Amino acid sequence and antimicrobial activity of chitin-binding peptides, Pp-AMP 1 and Pp-AMP 2, from Japanese bamboo shoots (Phyllostachys pubescens). Biosci Biotechnol Biochem 69:642–645

    PubMed  CAS  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CMT (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotech 18:1307–1310

    CAS  Google Scholar 

  • Gao GH, Liu W, Dai JX, Wang JF, Hu Z, Zhang Y, Wang DC (2001) Solution structure of PAFP-S: a new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biochemistry 40:10973–10978

    PubMed  CAS  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS ONE 7:e39557

    PubMed  CAS  Google Scholar 

  • Giudici AM, Regente MC, Villalaín J, Pfüller K, Pfüller U, De La Canal L (2004) Mistletoe viscotoxins induce membrane permeabilization and spore death in phytopathogenic fungi. Physiol Plant 121:2–7

    PubMed  CAS  Google Scholar 

  • Gledhill JR, Montgomery MG, Leslie AGW, Walker JE (2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci 104:13632–13637

    PubMed  CAS  Google Scholar 

  • Glenn AE, Bacon CW (2009) FDB2 encodes a member of the arylamine N-acetyltransferase family and is necessary for biotransformation of benzoxazolinones by Fusarium verticillioides. J Appl Microbiol 107:657–671

    PubMed  CAS  Google Scholar 

  • Glenn AE, Hinton DM, Yates IE, Bacon CW (2001) Detoxification of corn antimicrobial compounds as the basis for isolating Fusarium verticillioides and some other Fusarium species from corn. Appl Environ Microbiol 67:2973–2981

    PubMed  CAS  Google Scholar 

  • Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi Silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144:728–740

    PubMed  CAS  Google Scholar 

  • Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novák O, Strnad M, Pfeifhofer H, van der Graaff E, Simon U, Roitsch T (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol 157:815–830

    PubMed  Google Scholar 

  • Großkinsky DK, van der Graaff E, Roitsch T (2012) Phytoalexin transgenics in crop protection—fairy tale with a happy end? Plant Sci 195:54–70

    PubMed  Google Scholar 

  • Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Göransson U, Trabi M, Wang CK, Kinghorn AB, Robbrecht E, Craik DJ (2008) Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20:2471–2483

    PubMed  CAS  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    PubMed  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    PubMed  CAS  Google Scholar 

  • Hammami R, Ben Hamida J, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:D963–D968

    PubMed  CAS  Google Scholar 

  • He XZ, Dixon RA (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12:1689–1702

    PubMed  CAS  Google Scholar 

  • Henriques ST, Huang YH, Rosengren KJ, Franquelim HG, Carvalho FA, Johnson A, Sonza S, Tachedjian G, Castanho MARB, Daly NL, Craik DJ (2011) Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J Biol Chem 286:24231–24241

    PubMed  CAS  Google Scholar 

  • Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC (2002) Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett 521:87–90

    PubMed  CAS  Google Scholar 

  • Huang X, Wj Xie, Zz Gong (2000) Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett 478:123–126

    PubMed  CAS  Google Scholar 

  • Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PEA, Schmelz EA (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156:2082–2097

    PubMed  CAS  Google Scholar 

  • Hughes P, Dennis E, Whitecross M, Llewellyn D, Gage P (2000) The cytotoxic plant protein, β-purothionin, forms ion channels in lipid membranes. J Biol Chem 275:823–827

    PubMed  CAS  Google Scholar 

  • Inagaki YS, Etherington G, Geisler K, Field B, Dokarry M, Ikeda K, Mutsukado Y, Dicks J, Osbourn A (2011) Investigation of the potential for triterpene synthesis in rice through genome mining and metabolic engineering. New Phytol 191:432–448

    PubMed  CAS  Google Scholar 

  • Isaacs NW (1995) Cystine knots. Curr Opin Struct Biol 5:391–395

    PubMed  CAS  Google Scholar 

  • Iwai T, Kaku H, Honkura R, Nakamura S, Ochiai H, Sasaki T, Ohashi Y (2002) Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Mol Plant Microbe Interact 15:515–521

    PubMed  CAS  Google Scholar 

  • Jane Lunt S, Akerman S, Hill SA, Fisher M, Wright VJ, Reyes-Aldasoro CC, Tozer GM, Kanthou C (2011) Vascular effects dominate solid tumor response to treatment with combretastatin A-4-phosphate. Int J Cancer 129:1979–1989

    Google Scholar 

  • Jeandet P, Delaunois B, Aziz A, Donnez D, Vasserot Y, Cordelier S, Courot E (2012) Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. J Biomed Biotechnol Article ID 579089

    Google Scholar 

  • Jeandet P, Douillet-Breuil ACl, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    PubMed  CAS  Google Scholar 

  • Jia Z, Gou J, Sun Y, Yuan L, Tang Q, Yang X, Pei Y, Luo K (2010) Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). Tree Physiol 30:1599–1605

    PubMed  CAS  Google Scholar 

  • Joubert A, Bataille-Simoneau N, Campion C, Guillemette T, Hudhomme P, Iacomi-Vasilescu B, Leroy T, Pochon S, Poupard P, Simoneau P (2011) Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cell Microbiol 13:62–80

    PubMed  CAS  Google Scholar 

  • Kasahara S, Inoue SB, Mio T, Yamada T, Nakajima T, Ichishima E, Furuichi Y, Yamada H (1994) Involvement of cell wall β-glucan in the action of HM-1 killer toxin. FEBS Lett 348:27–32

    PubMed  CAS  Google Scholar 

  • Kaur J, Sagaram US, Shah D (2011) Can plant defensins be used to engineer durable commercially useful fungal resistance in crop plants? Fungal Biol Rev 25:128–135

    Google Scholar 

  • Kazan K, Rusu A, Marcus J, Goulter K, Manners J (2002) Enhanced quantitative resistance to Leptosphaeria maculans conferred by expression of a novel antimicrobial peptide in canola (Brassica napus L.). Mol Breeding 10:63–70

    CAS  Google Scholar 

  • Khaliluev MR, Mamonov AG, Smirnov AN, Kharchenko PN, Dolgov SV (2011) Expression of genes encoding chitin-binding proteins (PR-4) and hevein-like antimicrobial peptides in transgenic tomato plants enhanced resistanse to Phytophthora infestance. Russ Agricult Sci 37:297–302

    Google Scholar 

  • Kim JA, Cho K, Singh R, Jung YH, Jeong SH, Kim SH, Lee Je, Cho YS, Agrawal G, Rakwal R, Tamogami S, Kersten B, Jeon JS, An G, Jwa NS (2009) Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells 28:431–439

    PubMed  CAS  Google Scholar 

  • Koo JC, Lee B, Young ME, Koo SC, Cooper JA, Baek D, Lim CO, Lee SY, Yun DJ, Cho MJ (2004) Pn-AMP1, a plant defense protein, induces actin depolarization in yeasts. Plant Cell Physiol 45:1669–1680

    PubMed  CAS  Google Scholar 

  • Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata Si, Miyagi M, Tsunasawa S, Ha KS, Bae DW, Han Cd, Lee BL, Cho MJ (1998) Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim Biophys Acta 1382:80–90

    Google Scholar 

  • Lee OS, Lee B, Park N, Koo JC, Kim YH, Prasad D, Karigar C, Chun HJ, Jeong BR, Kim DH, Nam J, Yun JG, Kwak SS, Cho MJ, Yun DJ (2003) Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. Phytochemistry 62:1073–1079

    PubMed  CAS  Google Scholar 

  • Lee SB, Go YS, Bae HJ, Park JH, Cho SH, Cho HJ, Lee DS, Park OK, Hwang I, Suh MC (2009) Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol 150:42–54

    PubMed  CAS  Google Scholar 

  • Lewis K, Ausubel FM (2006) Prospects for plant-derived antibacterials. Nat Biotech 24:1504–1507

    CAS  Google Scholar 

  • Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MAG (2011) High-Yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460

    PubMed  CAS  Google Scholar 

  • Lipkin A, Anisimova V, Nikonorova A, Babakov A, Krause E, Bienert M, Grishin E, Egorov T (2005) An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 66:2426–2431

    PubMed  CAS  Google Scholar 

  • Liu MH, Otsuka N, Noyori K, Shiota S, Ogawa W, Kuroda T, Hatano T, Tsuchiya T (2009) Synergistic effect of kaempferol glycosides purified from Laurus nobilis and fluoroquinolones on methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 32:489–492

    PubMed  CAS  Google Scholar 

  • Liu Y, Luo J, Xu C, Ren F, Peng C, Wu G, Zhao J (2000) Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Plant Physiol 122:1015–1024

    PubMed  CAS  Google Scholar 

  • Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM, Faria J, Bellio M, Campos RC, Linden R, Kurtenbach E (2007) Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 46:987–996

    PubMed  CAS  Google Scholar 

  • Loeza-Ángeles H, Sagrero-Cisneros E, Lara-Zárate L, Villagómez-Gómez E, López-Meza JE, Ochoa-Zarzosa A (2008) Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol Lett 30:1713–1719

    PubMed  Google Scholar 

  • Manners J (2009) Primitive defence: the MiAMP1 antimicrobial peptide family. Plant Mol Biol Rep 27:237–242

    CAS  Google Scholar 

  • Marcus JP, Goulter KC, Green JL, Harrison SJ, Manners JM (1997) Purification, characterisation and cDNA cloning of an antimicrobial peptide from Macadamia integrifolia. Eur J Biochem 244:743–749

    PubMed  CAS  Google Scholar 

  • Marcus JP, Green JL, Goulter KC, Manners JM (1999) A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J 19:699–710

    PubMed  CAS  Google Scholar 

  • Maresh J, Zhang J, Lynn DG (2006) The innate immunity of maize and the dynamic chemical strategies regulating two-component signal transduction in Agrobacterium tumefaciens. ACS Chem Biol 1:165–175

    PubMed  CAS  Google Scholar 

  • Martins JC, Maes D, Loris R, Pepermans HAM, Wyns L, Willem R, Verheyden P (1996) 1H NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus. J Mol Biol 258:322–333

    PubMed  CAS  Google Scholar 

  • McManus AM, Nielsen KJ, Marcus JP, Harrison SJ, Green JL, Manners JM, Craik DJ (1999) MiAMP1, a novel protein from Macadamia integrifolia adopts a greek key β-barrel fold unique amongst plant antimicrobial proteins. J Mol Biol 293:629–638

    PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Buron LD, Salomonsen B, Olsen CE, Hansen BG, Mortensen UH, Halkier BA (2012) Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng 14:104–111

    PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Olsen CE, Halkier BA (2010) Production of the cancer-preventive glucoraphanin in tobacco. Mol Plant 3:751–759

    PubMed  CAS  Google Scholar 

  • Møldrup ME, Geu-Flores F, de Vos M, Olsen CE, Sun J, Jander G, Halkier BA (2012) Engineering of benzylglucosinolate in tobacco provides proof-of-concept for dead-end trap crops genetically modified to attract Plutella xylostella (diamondback moth). Plant Biotechnol J 10:435–442

    PubMed  Google Scholar 

  • Molina A, García-Olmedo F (1997) Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J 12:669–675

    PubMed  CAS  Google Scholar 

  • Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813

    PubMed  CAS  Google Scholar 

  • Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S (2007) Isolation and molecular characterization of a spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol 63:847–860

    PubMed  CAS  Google Scholar 

  • Mugford ST, Louveau T, Melton R, Qi X, Bakht S, Hill L, Tsurushima T, Honkanen S, Rosser SJ, Lomonossoff GP, Osbourn A (2013) Modularity of plant metabolic gene clusters: a trio of linked genes that are collectively required for acylation of triterpenes in oat. Plant Cell Online 25:1078–1092

    CAS  Google Scholar 

  • Muramoto N, Tanaka T, Shimamura T, Mitsukawa N, Hori E, Koda K, Otani M, Hirai M, Nakamura K, Imaeda T (2012) Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep 31:987–997

    PubMed  CAS  Google Scholar 

  • Nahirñak V, Almasia NI, Hopp HE, Vazquez-Rovere C (2012) Snakin/GASA proteins: Involvement in hormone crosstalk and redox homeostasis. Plant Signal Behav 7:1004–1008

    Google Scholar 

  • Ng TB, Cheung RCF, Wong JH, Ye X (2012) Lipid-transfer proteins. Biopolymers 98:268–279

    PubMed  CAS  Google Scholar 

  • Nguyen GKT, Lian Y, Pang EWH, Nguyen PQT, Tran TD, Tam JP (2012) Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. J Biol Chem 288:3370–3380

    Google Scholar 

  • Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. J Agric Food Chem 57:1677–1696

    PubMed  CAS  Google Scholar 

  • Nolde SB, Vassilevski AA, Rogozhin EA, Barinov NA, Balashova TA, Samsonova OV, Baranov YV, Feofanov AV, Egorov TA, Arseniev AS, Grishin EV (2011) Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli). J Biol Chem 286:25145–25153

    PubMed  CAS  Google Scholar 

  • Oard S, Rush MC, Oard JH (2004) Characterization of antimicrobial peptides against a US strain of the rice pathogen Rhizoctonia solani. J Appl Microbiol 97:169–180

    PubMed  CAS  Google Scholar 

  • Oard SV (2011) Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide. Biochim Biophys Acta 1808:1737–1745

    PubMed  CAS  Google Scholar 

  • Odintsova TI, Vassilevski AA, Slavokhotova AA, Musolyamov AK, Finkina EI, Khadeeva NV, Rogozhin EA, Korostyleva TV, Pukhalsky VA, Grishin EV, Egorov TA (2009) A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. FEBS J 276:4266–4275

    PubMed  CAS  Google Scholar 

  • Osbourn A, Goss RJM, Field RA (2011) The saponins - polar isoprenoids with important and diverse biological activities. Nat Prod Rep 28:1261–1268

    PubMed  CAS  Google Scholar 

  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci 96:12923–12928

    PubMed  CAS  Google Scholar 

  • Parijs J, Broekaert W, Goldstein I, Peumans W (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183:258–264

    Google Scholar 

  • Parkhi V, Kumar V, Campbell L, Bell A, Shah J, Rathore K (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975

    PubMed  CAS  Google Scholar 

  • Patel SU, Osborn R, Rees S, Thornton JM (1998) Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 37:983–990

    PubMed  CAS  Google Scholar 

  • Pedras MS, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: Chemistry and biology. Nat Prod Rep 28:1381–1405

    PubMed  CAS  Google Scholar 

  • Peng C, Dong C, Hou Q, Xu C, Zhao J (2005) The hydrophobic surface of PaAMP from pokeweed seeds is essential to its interaction with fungal membrane lipids and the antifungal activity. FEBS Lett 579:2445–2450

    PubMed  CAS  Google Scholar 

  • Pinto MFS, Almeida RG, Porto WF, Fensterseifer ICM, Lima LA, Dias SC, Franco OL (2012) Cyclotides: from gene structure to promiscuous multifunctionality. J Evid Based Complement Altern Med 17:40–53

    CAS  Google Scholar 

  • Pistelli L, Giorgi I (2012) Antimicrobial properties of flavonoids. In: Patra AK (ed) Dietary phytochemicals and microbes, Springer, Netherlands, p 33–91

    Google Scholar 

  • Plumed-Ferrer C, Väkeväinen K, Komulainen H, Rautiainen M, Smeds A, Raitanen JE, Eklund P, Alakomi HL WS, Saarela M, von Wright A (2013) The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. Int J Food Microbiol 164:99–107

    PubMed  CAS  Google Scholar 

  • Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacón O, López Y, Rodriguez M, Castillo J, Pujol M, Enriquez G, Borroto C, Trujillo L, Thomma BPHJ, Borrás-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690

    PubMed  CAS  Google Scholar 

  • Porto WF, VrA Souza, Nolasco DO, Franco OL (2012) In silico identification of novel hevein-like peptide precursors. Peptides 38:127–136

    PubMed  CAS  Google Scholar 

  • Poth AG, Mylne JS, Grassl J, Lyons RE, Millar AH, Colgrave ML, Craik DJ (2012) Cyclotides associate with leaf vasculature and are the products of a novel precursor in Petunia (Solanaceae). J Biol Chem 287:27033–27046

    Google Scholar 

  • Pränting M, Lööv C, Burman R, Göransson U, Andersson DI (2010) The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother 65:1964–1971

    PubMed  Google Scholar 

  • Regente MC, Giudici AM, Villalaín J, de la Canal L (2005) The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett Appl Microbiol 40:183–189

    PubMed  CAS  Google Scholar 

  • Rigano MM, Romanelli A, Fulgione A, Nocerino N, D’Agostino N, Avitabile C, Frusciante L, Barone A, Capuano F, Capparelli R (2012) A novel synthetic peptide from a tomato defensin exhibits antibacterial activities against Helicobacter pylori. J Pept Sci 18:755–762

    CAS  Google Scholar 

  • Rimando AM, Pan Z, Polashock JJ, Dayan FE, Mizuno CS, Snook ME, Liu CJ, Baerson SR (2012) In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. Plant Biotechnol J 10:269–283

    PubMed  CAS  Google Scholar 

  • Rivera-Vargas LI, Schmitthenner AF, Graham TL (1993) Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry 32:851–857

    CAS  Google Scholar 

  • Riviere C, Pawlus AD, Merillon JM (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29:1317–1333

    PubMed  CAS  Google Scholar 

  • Rogers EE, Glazebrook J, Ausubel FM (1996) Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions. Mol Plant Microbe Interact 9:748–757

    PubMed  CAS  Google Scholar 

  • Rostás M (2007) The effects of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one on two species of Spodoptera and the growth of Setosphaeria turcica in vitro. J Pest Sci 80:35–41

    Google Scholar 

  • Roy-Barman S, Sautter C, Chattoo B (2006) Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res 15:435–446

    PubMed  CAS  Google Scholar 

  • Sagaram US, Pandurangi R, Kaur J, Smith TJ, Shah DM (2011) Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS ONE 6:e18550

    PubMed  CAS  Google Scholar 

  • Saha S, Walia S, Kumar J, Parmar BS (2010) Structure-biological activity relationships in triterpenic saponins: the relative activity of protobassic acid and its derivatives against plant pathogenic fungi. Pest Manag Sci 66:825–831

    PubMed  CAS  Google Scholar 

  • Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci 2:25

    Google Scholar 

  • Schaefer S, Gasic K, Cammue B, Broekaert W, Damme E, Peumans W, Korban S (2005) Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta 222:858–866

    PubMed  CAS  Google Scholar 

  • Schlaeppi K, bou-Mansour E, Buchala A, Mauch F (2010) Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62:840–851

    PubMed  CAS  Google Scholar 

  • Schwessinger B, Ronald PC (2012) Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol 63:451–482

    PubMed  CAS  Google Scholar 

  • Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. MPMI 12:16–23

    PubMed  CAS  Google Scholar 

  • Shao F, Hu Z, Xiong YM, Huang QZ, Chun-Guang W, Zhu RH, Wang DC (1999) A new antifungal peptide from the seeds of Phytolacca americana: characterization, amino acid sequence and cDNA cloning. Biochim Biophys Acta 1430: 262–268

    Google Scholar 

  • Shen T, Wang XN, Lou HX (2009) Natural stilbenes: an overview. Nat Prod Rep 26:916–935

    PubMed  CAS  Google Scholar 

  • Shin J, Harte B, Ryser E, Selke S (2010) Active packaging of fresh chicken breast, with allyl isothiocyanate (AITC) in combination with modified atmosphere packaging (MAP) to control the growth of pathogens. J Food Sci 75:M65–M71

    PubMed  CAS  Google Scholar 

  • Shukurov R, Voblikova V, Nikonorova A, Komakhin R, Komakhina V, Egorov T, Grishin E, Babakov A (2012) Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens. Transgenic Res 21:313–325

    CAS  Google Scholar 

  • Silverstein KAT, Graham MA, Paape TD, VandenBosch KA (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol 138:600–610

    PubMed  CAS  Google Scholar 

  • Silverstein KAT, Moskal WA, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280

    PubMed  CAS  Google Scholar 

  • Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15:283–290

    PubMed  Google Scholar 

  • Sooriyaarachchi S, Jaber E, Covarrubias A, Ubhayasekera W, Asiegbu F, Mowbray S (2011) Expression and β-glucan binding properties of Scots pine (Pinus sylvestris L.) antimicrobial protein (Sp-AMP). Plant Mol Biol 77:33–45

    PubMed  CAS  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    PubMed  CAS  Google Scholar 

  • Stec B (2006) Plant thionins—the structural perspective. Cell Mol Life Sci 63:1370–1385

    PubMed  CAS  Google Scholar 

  • Stec B, Markman O, Rao U, Heffron G, Henderson S, Vernon LP, Brumfeld V, Teeter MM (2004) Proposal for molecular mechanism of thionins deduced from physico-chemical studies of plant toxins. J Pept Res 64:210–224

    PubMed  CAS  Google Scholar 

  • Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y (2011) Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J 67:81–93

    PubMed  CAS  Google Scholar 

  • Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    PubMed  CAS  Google Scholar 

  • Sung WS, Lee DG (2008) The combination effect of korean red ginseng saponins with kanamycin and cefotaxime against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 31:1614–1617

    PubMed  CAS  Google Scholar 

  • Tailor RH, Acland DP, Attenborough S, Cammue BPA, Evans IJ, Osborn RW, Ray JA, Rees SB, Broekaert WF (1997) A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J Biol Chem 272:24480–24487

    PubMed  CAS  Google Scholar 

  • Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Natl Acad Sci 96:8913–8918

    PubMed  CAS  Google Scholar 

  • Tassin S, Broekaert WF, Marion D, Acland DP, Ptak M, Vovelle F, Sodano P (1998) Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry 37:3623–3637

    PubMed  CAS  Google Scholar 

  • Tavares PM, Thevissen K, Cammue BPA, François IEJA, Barreto-Bergter E, Taborda CP, Marques AF, Rodrigues ML, Nimrichter L (2008) In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis. Antimicrob Agents Chemother 52:4522–4525

    PubMed  CAS  Google Scholar 

  • Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    PubMed  CAS  Google Scholar 

  • Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PWJ, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BPA (2012) The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 84:166–180

    PubMed  CAS  Google Scholar 

  • Thevissen K, Kristensen HH, Thomma BPHJ, Cammue BPA, François IEJA (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discovery Today 12:966–971

    PubMed  CAS  Google Scholar 

  • Tropf S, Lanz T, Rensing SA, Schröder J, Schröder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38:610–618

    PubMed  CAS  Google Scholar 

  • Van Damme EJM, Charels D, Roy S, Tierens K, Barre A, Martins JC, Rougé P, Van Leuven F, Does M, Peumans WJ (1999) A gene encoding a hevein-like protein from elderberry fruits is homologous to PR-4 and class V chitinase genes. Plant Physiol 119:1547–1556

    PubMed  Google Scholar 

  • Van den Bergh KPB, Proost P, Van Damme J, Coosemans J, Van Damme EJM, Peumans WJ (2002) Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.). FEBS Lett 530:181–185

    PubMed  Google Scholar 

  • van der Weerden NL, Anderson MA (2013) Plant defensins: common fold, multiple functions. Fungal Biol Rev 26:121–131

    Google Scholar 

  • van der Weerden NL, Hancock REW, Anderson MA (2010) Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J Biol Chem 285:37513–37520

    PubMed  Google Scholar 

  • van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 283:14445–14452

    PubMed  Google Scholar 

  • Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P, Rajaonson S, Diallo B, Mol A, Baucher M, El Jaziri M (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 157:2120–2132

    PubMed  CAS  Google Scholar 

  • Verma S, Yajima W, Rahman M, Shah S, Liu JJ, Ekramoddoullah A, Kav N (2012) A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Mol Biol 79:61–74

    PubMed  CAS  Google Scholar 

  • Vila-Perelló M, Sánchez-Vallet A, García-Olmedo F, Molina A, Andreu D (2005) Structural dissection of a highly knotted peptide reveals minimal motif with antimicrobial activity. J Biol Chem 280:1661–1668

    PubMed  Google Scholar 

  • Vincken JP, Heng L, de Groot A, Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275–297

    PubMed  CAS  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    PubMed  CAS  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318–333

    PubMed  Google Scholar 

  • Wang CK, Wacklin HP, Craik DJ (2012) Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions. J Biol Chem 287(52):43884–43898

    Google Scholar 

  • Wilson AlE, Bergaentzlé M, Bindler F, Marchioni E, Lintz A, Ennahar S (2013) In-vitro efficacies of various isothiocyanates from cruciferous vegetables as antimicrobial agents against foodborne pathogens and spoilage bacteria. Food Control 30:318–324

    CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    PubMed  CAS  Google Scholar 

  • Wu H, Zhang X, Zhang GA, Zeng SY, Lin KC (2011) Antifungal vapour-phase activity of a combination of allyl isothiocyanate and ethyl isothiocyanate against Botrytis cinerea and Penicillium expansum infection on apples. J Phytopathol 159:450–455

    Google Scholar 

  • Wu Q, VanEtten HD (2004) Introduction of plant and fungal genes into pea (Pisum sativum l.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. MPMI 17:798–804

    PubMed  CAS  Google Scholar 

  • Wu WH, Di R, Matthews KR (2013) Activity of the plant-derived peptide Ib-AMP1 and the control of enteric foodborne pathogens. Food Control 33:142–147

    CAS  Google Scholar 

  • Xiang Y, Huang RH, Liu XZ, Zhang Y, Wang DC (2004) Crystal structure of a novel antifungal protein distinct with five disulfide bridges from Eucommia ulmoides oliver at an atomic resolution. J Struct Biol 148:86–97

    PubMed  CAS  Google Scholar 

  • Yeats TH, Rose JKC (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci 17:191–198

    PubMed  CAS  Google Scholar 

  • Zamany A, Liu JJ, Ekramoddoullah A, Sniezko R (2011) Antifungal activity of a Pinus monticola antimicrobial peptide 1 (Pm-AMP1) and its accumulation in western white pine infected with Cronartium ribicola. Can J Microbiol 57:667–679

    PubMed  CAS  Google Scholar 

  • Zhou H, Lin J, Johnson A, Morgan R, Zhong W, Ma W (2011) Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell Host Microbe 9:177–186

    PubMed  CAS  Google Scholar 

  • Zottich U, Da Cunha M, Carvalho AO, Dias GB, Silva NCM, Santos IS, do Nacimento VV, Miguel EC, Machado OLT, Gomes VM (2011) Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim Biophys Acta 1810:375–383

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sampedro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sampedro, J., Valdivia, E.R. (2014). New Antimicrobial Agents of Plant Origin. In: Villa, T., Veiga-Crespo, P. (eds) Antimicrobial Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40444-3_4

Download citation

Publish with us

Policies and ethics